Nature of Procymidone-Tolerant Botrytis Cinerea Strains Obtained in Vitro

  • Toshiro Kato
  • Yoshio Hisada
  • Yasuo Kawase


Tolerance of plant pathogens to fungicides was not a serious problem when mainly non-systemic conventional fungicides were used. These fungicides have been called “multi-site inhibitors” because they non-selectively inhibit several biologically important functions of living fungal cells. The nature of their fungitoxic mechanisms implies that there is little possibility for the development of tolerant mutants because mutation of a single gene cannot overcome the lethal effect of their multisite activity. On the other hand, we have seen emergence of tolerant pathogens with the recently introduced systemic fungicides. Since these systemic fungicides can easily penetrate into plant tissues, they must be selectively toxic to pathogens at concentrations that do not produce phytotoxic effects. Therefore, systemic fungicides have been understood to be “specific-site inhibitors” as they affect biochemically restricted regions of fungal cells. This intrinsic nature of systemic fungicides accelerated the selection of the fungicide-tolerant pathogens that appeared through mutation of a single gene.


Sensitive Strain Aspergillus Nidulans Botrytis Cinerea Cucumber Seedling Tolerant Strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dekker, J., 1972, Resistance, in: “Systemic Fungicides,” R. W. Marsh, ed., pp. 156–174, Longman Group Limited, London.Google Scholar
  2. Dekker, J., 1977, The fungicide-resistance problems, Neth. J. Pl. Path., 83 (suppl. 1):159.CrossRefGoogle Scholar
  3. Dekker, J., and Gielink, A. J., 1979, Acquired resistance to pimaricin in Cladosporium cucumerinum and Fusarium oxysporum f. sp. narcissi associated with decreased virulence, Neth. J. Pl. Path., 85:67.CrossRefGoogle Scholar
  4. Esuruoso, O. F., and Wood, R. K. S., 1971, The resistance of spores of resistant strains of Botrytis cinerea to quintozene, tecnazene and dicloran, Ann. Appl. Biol., 68:271.CrossRefGoogle Scholar
  5. Fritz, R., Leroux, P., and Gredt, M., 1977, Mechanism of antifungal action of promidione (26019 RP or glycophene), vinclozolin and dicloran on Botrytis cinerea Pers., Phytopath. Z., 90:152.CrossRefGoogle Scholar
  6. Fuchs, A., de Ruig, S. P., van Tuyl, J. M., and de Vries, F. W., 1977, Resistance to triforine: A nonexistent problem? Neth. J. Pl. Path., 83 (Suppl. 1):189.CrossRefGoogle Scholar
  7. Georgopoulos, S. G., 1962, Genetic nature of tolerance of Hypomyces solani f. Cucurbitae to penta- and tetra-chloronitrobenzene, Nature, 194:148.CrossRefGoogle Scholar
  8. Georgopoulos, S. G., 1963, Tolerance to chlorinated nitrobenzenes in Hypomyces solani f. Cucurbitae and its mode of inheritance, Phytopathology, 53:1086.Google Scholar
  9. Georgopoulos, S. G., 1964, Chlorinated-nitrobenzene tolerance in Sclerotium rolfsii, Ann. Inst. Phytopath. Benaki N. S., 6:156.Google Scholar
  10. Georgopoulos, S. G., and Zaracovitis, C., 1967, Tolerance of fungi to organic fungicides, Ann. Rev. Phytopath., 5:109.CrossRefGoogle Scholar
  11. Georgopoulos, S. G., Kappas, A., and Maoris, B., 1966, Gene-controlled resistance to aromatic hydrocarbons in Neurospora crassa and its relationship to the inhibition by L-sorbose, Neurospora Newsletter, 10:8.Google Scholar
  12. Georgopoulos, S. G., Kappas, A., and Hastie, A. C., 1976, Induced sectoring in diploid Aspergillus nidulans as a criterion of fungitoxicity by interference with hereditary processes, Phytopathology, 66:217.CrossRefGoogle Scholar
  13. Georgopoulos, S. G., Sarris, M., and Ziogas, B. N., 1979, Mitotic instability in Aspergillus nidulans caused by the fungicides iprodione, procymidone and vinclozolin, Pestic. Sci., 10:389.CrossRefGoogle Scholar
  14. Hansen, H. N., and Smith, R. E., 1932, The mechanism of variation in imperfect fungi: Botrytis cinerea. Phytopathology, 22:953.Google Scholar
  15. Harding, P. R., Jr., 1959, Biphenyl-induced variations in citrus blue mold, Pl. Dis. Reptr., 43:649.Google Scholar
  16. Harding, P. R., Jr., 1962, Differential sensitivity to sodium orthophenylphenate by biphenyl-sensitive and biphenyl-resistant strains of Penicillium digitatum, Pl. Dis. Reptr., 46:100.Google Scholar
  17. Hirota, K., and Kato, K., 1977, On the development and decay of fungicide resistance in Botrytis cinerea to benomyl, Res. Bull. Aichi Agric. Res. Centr., B9:48.Google Scholar
  18. Hisada, Y., and Maeda, K., 1979, unpublished.Google Scholar
  19. Hisada, Y., Maeda, K., Tottori, N., and Kawase, Y., 1976, Plant disease control by N-(3′ ,5′-dichlorophenyl)-l,2-dimethylcyclopropane-l,2-dicarboximide, J. Pestic. Sci., 1:145.CrossRefGoogle Scholar
  20. Hisada, Y., Kato, T., and Kawase, Y., 1978, Mechanism of antifungal action of procymidone in Botrytis cinerea, Ann. Phytopath. Soc. Japan, 44:509.CrossRefGoogle Scholar
  21. Hislop, E. C., 1967, Observations on the vapor phase activity of some foliage fungicides, Ann. Appl. Biol., 60:265.CrossRefGoogle Scholar
  22. Kuiper, J., 1965, Failure of hexachlorobenzene to control common bunt of wheat, Nature, 206:1219.CrossRefGoogle Scholar
  23. Leroux, P., Fritz, R., and Gredt, M., 1977, Laboratory studies on strains of Botrytis cinerea Pers. tolerant to dichlozoline, dicloran, quintozene, vinclozolin and 26019 RP (or glycophene), Phytopath. Z., 89:347.CrossRefGoogle Scholar
  24. Leroux, P., Gredt, M., and Fritz, R., 1978, Resistance to dichlozoline, dicyclidin, iprodione, vinclozolin and aromatic hydrocarbon fungicides in some phytopathogenic fungi, Med. Fac. Landbouww. Rijksuniv. Gent, 43:881.Google Scholar
  25. Littauer, F., and Gutter, Y., 1953, Diphenyl-resistant strains of Diplodia, Palestine J. Botany Rehovot Ser., 8:185.Google Scholar
  26. Locke, S. B., 1969, Botran tolerance of Sclerotium cepivorum isolants from fields with different Botran-treatment histories, Phytopathology, 59:13.Google Scholar
  27. Lorenz, D. H., and Eichhorn, K. W., 1978, Untersuchungen zur möglichen Resistenzbildung von Botrytis cinerea an Reben gegen die Wirkstoffe Vinclozolin und Iprodione, Die Weinwissenschaft, 33:251.Google Scholar
  28. McKee, R. K., 1951, Mutations appearing in Fusarium caeruleum cultures treated with tetrachloronitrobenzene, Nature, 167:611.PubMedCrossRefGoogle Scholar
  29. Meyer, R. W., and Parmeter, J. R., Jr., 1968, Changes in chemical tolerance associated with heterokaryosis in Thanatephorus cucumeris, Phytopathology, 58:472.Google Scholar
  30. Ogawa, J. M., Ramsey, R. H., and Moore, C. J., 1963, Behavior of variants of Gilbertella persicaria arising in medium containing 2,6-dichloro-4-nitroaniline, Phytopathology, 53:97.Google Scholar
  31. Priest, D., and Wood, R. K. S., 1961, Strains of Botrytis allii resistant to chlorinated nitrobenzenes, Ann. Appl. Biol., 49:445.CrossRefGoogle Scholar
  32. Schüepp, H., and Kung, M., 1978, Gegenüber Dicarboximid-Fungiziden tolerante Stämme von Botrytis cinerea, Ber. Schweiz. Bot. Ges., 83:63.Google Scholar
  33. Shatla, M. N., and Sinclair, J. B., 1963, Tolerance to pentachloro-nitrobenzene among cotton isolates of Rhizoctonia solani, Phytopathology, 53:1407.Google Scholar
  34. Sherald, J. L., and Sisler, H. D., 1975, Antifungal mode of action of triforine, Pestio. Bioohem. Physiol., 5:477.CrossRefGoogle Scholar
  35. Skorda, E. A., 1977, Insensitivity of wheat bunt to hexachlorobenzene and quintozene (pentachloronitrobenzene) in Greece, Proa. 9 th Br. Inseotio. Fungic. Conf., 1:67.Google Scholar
  36. Sztejnberg, A., and Jones, A. L., 1978, Tolerance of the brown rot fungus Monilinia fruotioola to iprodione, vinclozolin and procymidone fungicides, Proa. Am. Phytopath. Soc., 5:187.Google Scholar
  37. Takaki, H., Hisada, Y., Ozaki, T., and Kawase, Y., 1979, unpublishedGoogle Scholar
  38. Threlfall, R. J., 1968, The genetics and biochemistry of mutants of Aspergillus nidulans resistant to chlorinated nitrobenzenes, J. Gen. Microbiol., 52:35.Google Scholar
  39. Tillman, R. W., and Sisler, H. D., 1973, Effect of chloroneb on the growth and metabolism of Ustilago maydis, Phytopathology, 63:219.CrossRefGoogle Scholar
  40. Webster, R. K., Ogawa, J. M., and Moore, C. J., 1968, The occurrence and behavior of variants of Rhizopus stolonifer tolerant to 2,6-dichloro-4-nitroaniline, Phytopathology, 58:997.Google Scholar
  41. Webster, R. K., Ogawa, J. M., and Bose, E., 1970, Tolerance of Botrytis cinerea to 2,6-dichloro-4-nitroaniline, Phytopathology, 60:1489.CrossRefGoogle Scholar
  42. Wolfe, M. S., 1971, Fungicides and the fungus population problem, Proc. 6th Br. Insectic. Fungic. Conf., 2:724.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Toshiro Kato
    • 1
  • Yoshio Hisada
    • 1
  • Yasuo Kawase
    • 1
  1. 1.Research Department, Pesticides DivisionSumitomo Chemical Co., Ltd.Takarazuka, Hyogo 665Japan

Personalised recommendations