Mechanisms of Fungicide Resistance — with Special Reference to Organophosphorus Fungicides

  • Yasuhiko Uesugi


Resistance of plant pathogenic fungi to agricultural fungicides was not important in field practice until about 1970, but it is now an urgent problem in many countries. The resistance problem is mainly due to the recent development and widespread use of new types of fungicides that act more specifically on target fungi and are generally less toxic to mammals and higher plants than conventional fungicides. While greater specificity is desirable, it is not altogether beneficial because it increases the possibility that toxicity will be overcome by fungal resistance. In some cases, a single mutation in a fungal pathogen may lead to resistance problems.


Field Isolate Aspergillus Nidulans Fungicide Resistance Niigata Prefecture Rice Blast Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akatsuka, T., Kodama, O., and Yamada, H., 1977, A novel mode of action of Kitazin P in Pyviculavia oryzae, Agric. Biol. Chem.. 41:2111.CrossRefGoogle Scholar
  2. Bartz, J. A., and Mitchell, J. E., 1970a, Comparative interaction of N-dodecylguanidine acetate with four plant pathogenic fungi, Phytopathology, 60:345.CrossRefGoogle Scholar
  3. Bartz, J. A., and Mitchell, J. E., 1970b, Evidence for the metabolic detoxification of N-dodecylguanidine acetate by ungerminated macroconidia of Fusarium solani f. sp. phaseoli, Phytopathology, 60:350.CrossRefGoogle Scholar
  4. Benveniste, R., and Davies, J., 1973, Mechanism of antibiotic resistance in bacteria, Ann. Rev. Biochem., 42:471.PubMedCrossRefGoogle Scholar
  5. Davidse, L. C., and Flach, W., 1977, Differential binding of methyl benzimidazol-2-ylcarbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans, J. Cell Biol., 72:174.PubMedCrossRefGoogle Scholar
  6. Davies, J., and Smith, D. I., 1978, Plasmid-determined resistance to antimicrobial agents, Ann. Rev. Microbiol., 32:469.CrossRefGoogle Scholar
  7. Dekker, J., 1968, The development of resistance in Cladosporium cucumerinum against 6-azauracil, a chemotherapeutant of cucumber scab, and its relation to biosynthesis of RNA-precursors, Neth. J. Plant Pathol., 74 Suppl. 1:127.CrossRefGoogle Scholar
  8. de Waard, M. A., 1972, On the mode of action of the organophosphorus fungicide Hinosan, Neth. J. Plant Pathol., 78:186.CrossRefGoogle Scholar
  9. de Waard, M. A., 1974, Mechanism of action of the organophosphorus fungicide pyrazophos, Mededelingen Landbouwhogeschool Wageningen, 74–14:45.Google Scholar
  10. de Waard, M. A., and van Nistelrooy, J. G. M., 1979, Mechanism of resistance to fenarimol in Aspergillus nidulans, Pestic. Bio-chem. Physiol., 10:219.CrossRefGoogle Scholar
  11. Georgopoulos, S. G., and Sisler, H. D., 1970, Gene mutation eliminating antimycin A-tolerant electron transport in Ustilago maydis, J. Bacteriol., 103:745.PubMedGoogle Scholar
  12. Georgopoulos, S. G., and Ziogas, B. N., 1977, A new class of carboxin-resistant mutants of Ustilago maydis, Neth. J. Plant Pathol., 83 Suppl. 1:235.CrossRefGoogle Scholar
  13. Georgopoulos, S. G., Alexandri, E., and Chrysayi, M., 1972, Genetic evidence for the action of oxathiin and thiazole derivatives on the succinic dehydrogenase system of Ustilago maydis mitochondria, J. Bacteriol., 110:809.PubMedGoogle Scholar
  14. Georgopoulos, S. G., Chrysayi, M., and White, G. A., 1975, Carboxin resistance in the haploid, the heterozygous diploid, and the plant parasitic dicaryotic phase of Ustilago maydis, Pestic. Biochem. Physiol., 5:543.CrossRefGoogle Scholar
  15. Greenaway, W., 1971, Relation between mercury resistance and pigment production in Pyrenophora avenae, Trans. Brit. Mycol. Soc., 56:37.CrossRefGoogle Scholar
  16. Greenaway, W., 1972, Permeability of phenyl-Hg -susceptible isolates of Pyrenophora avenae to the phenyl-Hg+ ion, J. Gen. Microbiol., 73:251.Google Scholar
  17. Hori, M., Eguchi, J., Kakiki, K., and Misato, T., 1974, Study on the mode of action of polyoxins. VI. Effect of polyoxin B on chitin synthesis in polyoxin-sensitive and resistant strains of Altervaria kikuchiana, J. Antibiotics, 27:260.Google Scholar
  18. Hori, M., Kakiki, K., and Misato, T., 1976, Mechanism of polyoxin- resistance in Alternaria kikuchiana, J. Pestic. Sci., 1:31.CrossRefGoogle Scholar
  19. Huang, K. T., Misato, T., and Asuyama, H., 1964, Selective toxicity of blasticidin S to Piricularia oryzae and Pellicularia sasakii, J. Antibiotics, A 17:71.Google Scholar
  20. Kappas, A., and Georgopoulos, S. G., 1970, Genetic analysis of dodine resistance in Nectria haematococca (syn. Hypomyoes solani), Genetics, 66:617.PubMedGoogle Scholar
  21. Katagiri, M., and Uesugi, Y., 1911, Similarities between the fungicidal action of isoprothiolane and organophosphorus thiolate fungicides, Phytopathology, 67:1415.Google Scholar
  22. Katagiri, M., and Uesugi, Y., 1978, In vitro selection of mutants of Pyricularia ovyzae resistant to fungicides, Nippon Shokubutsu Byori Gakkaiho, 44:218.Google Scholar
  23. Katagiri, M., Uesugi, Y., and Umehara, Y., 1978, Field emergence of resistance to organophosphorus fungicides in Pyricularia ovyzae (Abstract), Nippon Shokubutsu Byori Gakkaiho, 44:401.Google Scholar
  24. Katagiri, M., Uesugi, Y., and Umehara, Y., 1979, Some characteristics of field isolates resistant to organophosphorus fungicides in sensitivity to fungicides (Abstract), Nippon Shokubutsu Byori Gakkaiho, 45:548.Google Scholar
  25. Ko, W. H., 1968, Evaluation of two suggested factors determining the specificity of pentachloronitrobenzene, Phytopathology, 58:1715.Google Scholar
  26. Kodama, O., Yamada, H., and Akatsuka, T., 1979, Kitazin P, inhibitor of phosphatidylcholine biosynthesis in Pyricularia oryzae, Agric. Biol. Chem., 43:1719.CrossRefGoogle Scholar
  27. Lambert, D. H., and Wuest, P. J., 1976, Acid production, a possible basis for benomyl tolerance in Verticillium malthousei, Phytopathology, 66:1144.CrossRefGoogle Scholar
  28. Maeda, T., Abe, H., Kakiki, K., and Misato, T., 1970, Studies on the mode of action of organophosphorus fungicide, Kitazin. Part II. Accumulation of an amino sugar derivative on Kitazin-treated mycelia of Pyricularia oryzae, Agric. Biol. Chem., 34:70.CrossRefGoogle Scholar
  29. Misato, T., and Ko, K., 1975, The development of resistance to agricultural antibiotics, in: “Environmental Quality and Safety Suppl. 3, Pesticides,” F. Coulston and F. Korte, eds., pp. 437–440, George Thieme Publishers, Stuttgart.Google Scholar
  30. Nachmias, A., and Barash, I., 1976, Decreased permeability as a mechanism of resistance to methyl benzimidazol-2-ylcarbamate (MBC) in Sporobolomyces roseus, J. Gen. Microbiol., 94:167.PubMedGoogle Scholar
  31. Nakanishi, T., and Oku, H., 1969, Metabolism and accumulation of pentachloronitrobenzene by phytopathogenic fungi in relation to selective toxicity, Phytopathology, 59:1761.PubMedGoogle Scholar
  32. Nakanishi, T., and Oku, H., 1970, Mechanism of selective toxicity of fungicide: Absorption, metabolism and accumulation of pentachloronitrobenzene by phytopathogenic fungi, Nippon Shokubutsu Byori Gakkaiho, 36:67.Google Scholar
  33. Ross, I. S., 1974, Non-protein thiols and mercury resistance of Pyrenophora avenae, Trans. Brit. Mycol. Soc., 63:77.CrossRefGoogle Scholar
  34. Ross, I. S., and Old, K. M., 1973, Thiol compounds and resistance of Pyrenophora avenae to mercury, Trans. Brit. Mycol. Soc., 60:301.CrossRefGoogle Scholar
  35. Tomizawa, C., and Uesugi, Y., 1972, Metabolism of 5-benzyl 0,0-diisopropyl phosphorothiolate (Kitazin P) by mycelial cells of Pyricularia oryzae, Agric. Biol. Chem., 36:294.CrossRefGoogle Scholar
  36. Uesugi, Y., and Katagiri, M., 1977, Back-mutation of an organophosphorus thiolate-resistant mutant of Pyvioulavia ovyzae, Neth. J. Plant Pathol., 83 Suppl. 1:243.CrossRefGoogle Scholar
  37. Uesugi, Y., and Sisler, H. D., 1978, Metabolism of a phosphoramidate by Pyvioulavia ovyzae in relation to tolerance and synergism by a phosphorothiolate and isoprothiolane, Pestio. Bioohem. Physiol., 9:247.CrossRefGoogle Scholar
  38. Uesugi, Y., and Tomizawa, C., 1971, Metabolism of O-ethyl S,S-diphenyl phosphorodithiolate (Hinosan) by mycelial cells of Pyvioulavia ovzyae, Agvio. Biol. Chem., 35:941.CrossRefGoogle Scholar
  39. Uesugi, Y., and Tomizawa, C., 1972, Metabolism of S-benzyl O-ethyl phenylphosphonothiolate (Inezin) by mycelial cells of Pyvioulavia ovzyae, Agvio. Biol. Chem., 36:313.CrossRefGoogle Scholar
  40. Uesugi, Y., Katagiri, M., and Fukunaga, K., 1969, Resistance in Pyvioulavia ovyzae to antibiotics and organophosphorus fungicides, Nogyo Gijutsu Kenkyusho Hokoku, 23:93.Google Scholar
  41. Uesugi, Y., Katagiri, M., and Noda, O., 1974, Negatively correlated cross-resistance and synergism between phosphoramidates and phosphorothiolates in their fungicidal actions on rice blast fungi, Agvio. Biol. Chem., 38:907.CrossRefGoogle Scholar
  42. Uesugi, Y., Kodama, O., and Akatsuka, T., 1978, Inhibition of fungal metabolism of some organophosphorus compounds by piperonyl butoxide, Agvio. Biol. Chem., 42:2181.CrossRefGoogle Scholar
  43. van Tuyl, J. M., 1977, Genetics of fungal resistance to systemic fungicides, Mededelingen Landbouwhogesohool Wageningen, 77–2:1.Google Scholar
  44. White, G. A., Thorn, G. D., and Georgopoulos, S. G., 1978, Oxathiin carboxamides highly active against carboxin-resistant succinic dehydrogenase complexes from carboxin-selected mutants of Ustilago maydis and Aspevgillus nidulans, Pestio. Bioohem. Physiol., 9:165.CrossRefGoogle Scholar
  45. Yaoita, T., Go, N., Aoyagi, K., and Sakurai, H., 1977, Epidemiological trend of strains of rice blast fungus resistant to fungicides in Niigata Prefecture (Abstract), Nippon Shokubutsu Byovi Gakkaiho, 43:357.Google Scholar
  46. Yaoita, T., Go, N., Aoyagi, K., and Sakurai, H., 1978, Distribution of sensitivity to organophosphorus fungicides among isolates of rice blast fungus from Niigata Prefecture (Abstract), Nippon Shokubutsu Byovi Gakkaiho, 44:401.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Yasuhiko Uesugi
    • 1
  1. 1.National Institute of Agricultural SciencesYatabe-machi, Tsukuba, Ibaraki 305Japan

Personalised recommendations