Advertisement

Mechanisms of Acaricide Resistance with Emphasis on Dicofol

  • Tetsuo Saito
  • Katsuhiro Tabata
  • Satoshi Kohnot

Abstract

Resistance in mites to acaricides was first observed by Compton and Kearns in the two-spotted spider mite when it developed resistance to ammonium potassium selenosulfide (Selecide®) in 1937. The introduction of organophosphorus acaricides in 1947, first TEPP and later parathion, resulted in the virtual elimination of mites in greenhouses. Resistance to parathion and TEPP became evident in 1949, and by 1950 resistant mites were present in a large percentage of rose houses in the eastern United States (Jeppson et al., 1975).

Keywords

Spider Mite Organophosphorus Compound Furfuryl Alcohol Mouse Urine Soluble Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada, M., 1978, Genetics and biochemical mechanisms of acaricide resistance in phytophagous mites, J. Pesti. Sci., 3:61.CrossRefGoogle Scholar
  2. Brader, L., 1977, Resistance in mites and insects affecting orchard crops, in: “Pesticide Management and Insecticide Resistance,” D. L. Watson and A. W. A. Brown, eds., Academic Press, New York, pp. 353–376.Google Scholar
  3. Casida, J. E., 1955, Comparative enzymology of certain insect acetylesterases in relation to poisoning by organophosphorus insecticides, Biochem. J., 60:487.PubMedGoogle Scholar
  4. Compton, C. C., and Kearns, W. W., 1937, Improved control of red spider on greenhouse crops with sulfur and cyclohexylamine derivatives, J. Econ. Entomol., 30:512.Google Scholar
  5. Croft, B. A., 1977, Resistance in arthropod predators and parasites, in: “Pesticide Management and Insecticide Resistance,” D. L. Watson and A. W. A. Brown, eds., Academic Press, New York, pp. 377–393.Google Scholar
  6. Dauterman, W. C., and Mehrotra, K. N., 1963, The N-alkyl group specificity of Cholinesterase from the house fly, Musca domestica L., and the two-spotted spider mite, Tetvanychus telavius L., J. Insect Physiol., 9:257.CrossRefGoogle Scholar
  7. Dittrich, V., 1969, Chlorphenamidine negatively correlated with OP resistance in a strain of two-spotted spider mite, J. Econ. Entomol., 62:44.Google Scholar
  8. Dittrich, V., and Chobrial, A., 1974, Dynamics of resistance to acaricides in two mite species, Tetvanychus avabicus Attiah, and T. cucuvbitacearum Saved, occurring on Egyptian cotton, A. ang. Ent., 76:418.CrossRefGoogle Scholar
  9. Hansen, C. O., Naegele, J. A., and Everett, H. E., 1963, Cross-resistance patterns in the two-spotted spider mite, in: “Advance in Acarology I,” J, G. Matthysse, W. D. McEnroe, B. V. Travis, K. N. Mehrotra and V. Dittrich, eds., Comstock Publ Co., New York, pp. 257–275.Google Scholar
  10. Helle, W., and Ovemeer, W. P. J., 1973, Variability in tetranychid mites, Ann. Rev. Ent., 18:97.CrossRefGoogle Scholar
  11. Henneberry, T. J., Adams, J. R., and Cantwell, G. E., 1964, Comparative electron microscopy of the integument of organophosphate resistant and non-resistant two-spotted spider mties (Tetvanychus telavius L.), Acalovogia, 6:414.Google Scholar
  12. Hirai, K., Miyata, T., and Saito, T., 1972, A comparison of the pesticide susceptibility of citrus red mite, Panonychus citri McGregor, treated by micro syringe application method and spraying method, Jap. J. appl. Ent. Zool., 16:215.CrossRefGoogle Scholar
  13. Hirai, K., Miyata, T., and Saito, T., 1974, Penetration of P-dimethoate into organophosphate-resistant and susceptible citrus red mite, Panonychus citvi McGregor (Acarina: Tetrany-chidae), Appl. Ent. Zool., 8:183.Google Scholar
  14. Hoyt, S. C., and Harries, F. H., 1961, Laboratory and field studies on orchard-mite resistance to Kelthane, J. Econ. Entomol., 54:12.Google Scholar
  15. Inoue, K., 1979, The change of susceptibility of mite population to dicofol and genetic analysis of dicofol resistance in the citrus red mite, Panonyehus citri (McG.), J. Testi. Sci., 4:337.Google Scholar
  16. Inoue, T., and Saito, T., 1972, The susceptibilities of various stages of dicofol resistant and susceptible citrus red mite, Panonychus citri McGregor, against dicofol, Jap. J. appl. Ent. Zool., 16:152.CrossRefGoogle Scholar
  17. Jeppson, L. R., 1963, Cross resistance in Acarina, in: “Advances in Acarology I,” J. G. Matthysse, W. D. McEnroe, B. V. Travis, K. N. Mehrotra, and V. Dittrich, eds., Comstock Publ. Co., New York, pp. 276–282.Google Scholar
  18. Jeppson, L. R., Complin, J. O., and Jesser, M. J., 1962, Effects of application programs on citrus red mite control and development of resistance to acaricides, J. Econ. Entomol., 55:17.Google Scholar
  19. Jeppson, L. R., Keifer, H. H., and Baker, E. W., 1975, “Mites Injurious to Economic Plants,” University of California Press, Berkeley, pp. 614.Google Scholar
  20. Kuwahara, M., 1977, Joint action of organophosphates, carbamates and synthetic synergists against ESP-selected and ESP-reversely-selected strains of Kanzawa spider mite, Tetranychus kanzawai Kishida, Jap. J. appl. Ent. Zool., 21:94.CrossRefGoogle Scholar
  21. Matsumura, F., and Voss, G., 1964, Mechanism of malathion and parathion resistance in the two-spotted spider mite, Tetranychus urticae, J. Econ. Entomol., 57:911.Google Scholar
  22. Matsumoto, K., and Shinkaji, J., 1974, Difference of susceptibility against various acaricides between dicofol-resistant strain and susceptible strains of the citrus red mite, Panonychus citri (McGregor), Jap. J. appl. Ent. Zool., 18:147.CrossRefGoogle Scholar
  23. Motoyama, N., and Saito, T., 1968, Substrate specificity of Cholinesterase in mites, Botyu-Kagaku, 33:77.Google Scholar
  24. Nomura, K., 1973, Review of acaricide resistance in red spider mites in Japan, Rev. Plant Protec. Res., 6:44.Google Scholar
  25. Nomura, K., and Nakagaki, S., 1959, On resistance of red spider mite, Tetranychus cinnabarinus, to methyl demeton (Metasystox), Tech. Bull. Fac. Hort. Chiba Univ., 7:39.Google Scholar
  26. Osakabe, M., 1971, Studies on insecticide resistance of the Kanzawa spider mite, Tetranychus kanzawai Kishida, I-III, Rev. Plant Protect. Res., 4:132.Google Scholar
  27. Osakabe, M., 1973, Studies on acaricide resistance of the Kanzawa spider mite, Tetranychus knazawai Kishida, parasitic on tea plant, Bull. Eat. Res. Inst. Tea, 8:1.Google Scholar
  28. Sakai, M., 1967, Hydrolysis of acetylthiocholine and butyrylthio-choline by cholinesterases of insects and a mite, Appl. Ent. Zool., 2:111.Google Scholar
  29. Seki, M., 1958, Control of the citrus red mite, Panonyehus citri, Record of II Symposium Jap. Soc. Appl. Ent. Zool., 59:62.Google Scholar
  30. Smissaert, H. R., 1964, Cholinesterase inhibition in spider mites susceptible and resistant to organophosphates, Science, 143:129.PubMedCrossRefGoogle Scholar
  31. Smissaert, H. R., Voerman, S., Oostenbrugge, L., and Renooy, J., 1970, Acetylcholinesterases of organophosphate-susceptible and resistant spider mites, J. Agr. Food Chem., 18:66.CrossRefGoogle Scholar
  32. Tabata, K., and Saito, T., 1970, Topical application of insecticide solutions to citrus red mite, Panonychus citri McGregor, Jap. J. appl. Ent. Zool., 14:218.CrossRefGoogle Scholar
  33. Tabata, K. and Saito, T., 1971, Mechanism of dicofol resistance in spider mites I: Fate of topically applied 3H-dicofol in citrus red mite, Panonychus citri McGregor, Botyu-Kagaku, 36:169.Google Scholar
  34. Tabata, K., and Saito, T., 1973, Mechanism of dicofol resistance in spider mites II: Thin layer chromatographic identification of dicofol metabolites in citrus red mite, Panonychus citri McGregor, Botyu-Kagaku, 38:151.Google Scholar
  35. Tabata, K., Miyata, T., and Saito, T., 1979, Water soluble metabolites of dicofol in mouse urine, Appl. Ent. Zool., 14:490.Google Scholar
  36. Takahashi, Y., Saito, T., Iyatomi, K., and Eto, M., 1972, Joint toxic action of organophosphorus compounds and various compounds to resistant citrus red mite I: Joint toxic action of various compounds with malathion and dimethoate to organophosphate-resistant citrus red mite, Botyu-Kagaku, 37:13.Google Scholar
  37. Takahashi, Y., Saito, T., Iyatomi, K., and Eto, M., 1973, Joint toxic action of organophosphorus compounds and various compounds to resistant citrus red mite II: Mechanism of synergistic action between malathion and K-l (2-phenyl-4H-l,3,2-benzodioxaphos-phorin-2-oxide) in organophosphate-resistant citrus red mites, Botyu-Kagaku, 38:13.Google Scholar
  38. Voss, G., 1959, Esterasen bei der Spinnmilbe, Tetranychus urticae Koch (Acari, Trombidiformes 3 Tetranychidae), Naturwissenschaften, 46:652.CrossRefGoogle Scholar
  39. Voss, G., 1960, Esterasen bie der Spinnmible, Tetranychus urticae Koch (Acari, Trombidif ormes 3 Tetranychidae), Naturwissenschaften, 47:400.CrossRefGoogle Scholar
  40. Voss, G., and Matsumura, F., 1964, Resistance to organophosphorus compounds in the two-spotted spider mite: Two different mechanisms of resistance, Nature, 202:319.PubMedCrossRefGoogle Scholar
  41. Voss, G., and Matsumura, F., 1965, Biochemical studies on a modified and normal Cholinesterase found in the Leverkusen strains of the two-spotted spider mite, Tetranychus urticae, Can. J. Biochem., 43:63.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Tetsuo Saito
    • 1
  • Katsuhiro Tabata
    • 1
  • Satoshi Kohnot
    • 1
  1. 1.Laboratory of Applied Entomology and Nematology, Faculty of AgricultureNagoya UniversityFuro-cho, Chikusa-ku, Nagoya464 Japan

Personalised recommendations