Advertisement

Mechanisms of Pesticide Resistance in Non-Target Organisms

  • G. M. Booth
  • D. J. Weber
  • L. M. Ross
  • S. D. Burton
  • W. S. Bradshaw
  • W. M. Hess
  • J. R. Larsen

Abstract

Published literature on pesticide resistance is voluminous. In preparation of this paper, a computerized literature search of over 50,000 journals resulted in off-line printouts of about 2,000 resistance articles from the data banks of Chemical Abstracts, Biological Abstracts, Enviroline, Toxline, and Agricola. These references spanned approximately the last ten years.

Keywords

Bacillus Subtilis Aspergillus Niger Transmission Electron Micrographs Trichoderma Viride Hyphal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, R. D., Jr., Bull, A. T., Jr., and Poller, R. C., Jr., 1971, Behavior of triphenyltin acetate in soil, Chem. Ind. (London), 7:204.Google Scholar
  2. Birger, T. I., and Malyarevskaya, A. Ya., 1977, Some biochemical mechanisms of resistance of aquatic invertebrates to toxicants, Gidrobiol. Zh., 13(6):69.Google Scholar
  3. Bixby, M., Boush, G. M., and Matsumura, F., 1971, Degradation of dieldrin to carbon dioxide by the soil fungus, Trichoderma koningi, Bull. Environ. Contam. Toxicol., 6:491.CrossRefGoogle Scholar
  4. Booth, G. M., 1978, Dimilin and the environment, in: “Dimilin: Breakthrough in Pest Control,” p. 5, Agri-fieldman and Consultant.Google Scholar
  5. Booth, G. M., and Ferrell, D., 1977, Degradation of dimilin by aquatic foodwebs, in: “Pesticides in Aquatic Environments,” M. A. Q. Khan, ed., pp. 221–243, Plenum Press, New York.Google Scholar
  6. Brattsten, L. B., and Metcalf, R. L., 1970, The synergistic ratio of carbaryl with piperonyl butoxide as an indicator of the distribution of multi-function oxidases in the Insecta, J. Econ. Entomol., 36:101.Google Scholar
  7. Chambers, H., Dziuk, L. J., and Watkins, J., 1977, Hydrolytic activation and detoxication of 2,4-D acid esters in mosquito fish, Pestic. Bioohem. Physiol., 7(3): 297.CrossRefGoogle Scholar
  8. Chambers, J. E., and Yarbrough, J. D., 1973, Organophosphate degradation by insecticide-resistant and susceptible populations of mosquito fish (Gambusia affinia), Pestic. Biochem. Physiol., 3(3):312.CrossRefGoogle Scholar
  9. Evans, W. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature, 270(5632): 312.CrossRefGoogle Scholar
  10. Gruen, L., 1966, Trialkyl (aryl) tin toxicity to bacteria, Gesundheitsw. Disinfex., 58:81 (Chem. Abs., 1965, 66, 610n).Google Scholar
  11. Hansen, L. G., Kapoor, I. P., and Metcalf, R. L., 1971, Biochemistry of selective toxicity and biodegradability: Comparative O-dealkylation by aquatic organisms, Comp. Pharm. Toxicol., 3(11):339.Google Scholar
  12. Hartgrove, R. W., Jr., Hundley, S. G., and Webb, R. E., 1977, Characterization of the hepatic mixed-function oxidase system in endrin-resistant and susceptible pine voles, Pestio. Bioohem. Physiol., 7(2):146.CrossRefGoogle Scholar
  13. Hodgson, E., 1974, Comparative studies of cytochrome P-450 and its interaction with pesticides, in: “Survival in Toxic Environments,” M. A. Q. Khan and J. P. Bederka, eds., pp. 213–260, Academic Press, Inc., New York.Google Scholar
  14. Hodgson, E., 1976, Comparative toxicology: Cytochrome P-450 and mixed-function oxidase activity in target and non-target organisms, in: “Essays in Toxicology Volume 7,” W. J. Hayes, Jr., ed., pp. 73–97, Academic Press, Inc., New York.Google Scholar
  15. Johnson, B. T., Saunders, A. and Saunders, H. O., 1971, Metabolism of DDT by fresh water invertegrates, J. Fish. Res. Bd. Can., 28:705.CrossRefGoogle Scholar
  16. Kagoshima, J., 1977, Effect of river and sea pollution from organo-phosphorus pesticides on marine animals, Nippon Suisan Hogo Kyoka. Geppo., 151:4.Google Scholar
  17. Khan, M. A. Q., Korte, F., and Payne, J. F., 1977, Metabolism of pesticides by aquatic animals, in: “Pesticides in the Aquatic Environments,” M. A. Q. Khan, ed., Plenum Press, New York.Google Scholar
  18. Kynard, B., 1974, Avoidance behavior of insecticide susceptible and resistant populations of mosquito fish to four insecticides, Trans. Am. Fish. Soc., 103(3):557.CrossRefGoogle Scholar
  19. Leger, R. G., and Millette, G. J. F., 1977, Resistance of earthworms Lumbrious terrestris and Allolobophora turgida to captan 50 W. P., Rev. Can. Biol., 36(4):351.PubMedGoogle Scholar
  20. Matsumura, F., 1974, Microbial degradation of pesticides, in: “Survival in Toxic Environments,” M. A. Q. Khan and J. P. Bederka, Jr., eds., pp. 129–154, Academic Press, Inc., New York.Google Scholar
  21. Metcalf, R. L., Po-Yung, L., and S. Bowlus, 1975, Degradation and environmental fate of 1-(2,6-difluorobenzoyl)-3-(4-chlorophenyl) urea, J. Agrio. Fd. Chem., 23(3):359.CrossRefGoogle Scholar
  22. Miyamoto, J., Kitagawa, K., and Sato, Y., 1966, Reductive metabolism of organophosphorus compounds by microbial organisms, Jap. J. Expt. Med., 36:211.Google Scholar
  23. Pemberton, J. M., and Fisher, P. R., 1977, 2,4-D plasmids and persistence, Nature, 268(5622): 72.CrossRefGoogle Scholar
  24. Puiseux-Dao, S., Jeanne-Levain, N., Roux, F., Ribier, J., Borghi, H., and Brun, C., 1977, Analysis of the effects of the organochlo-rine insecticide lindane at the cellular level, Protoplasma, 91(3):325.PubMedCrossRefGoogle Scholar
  25. Schewe, T., Hiebsch, C., and Halangk, W., 1975, The action of the systemic fungicide dexon, on several NADH dehydrogenases, Acta Biol. Med. Ger., 34(11–12):1767.PubMedGoogle Scholar
  26. Shishido, T., 1978, The role of glutathione S-transferases in pesticide metabolism, Nippon Noyaku Gakkaish (J. Pestic. Soi.), 3(suppl.):465.Google Scholar
  27. Subba, Rao, R. V., and Alexander, M., 1977, Effect of chemical structure on the biodegradability of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT), J. Agric. Fd. Chem., 25(2):327.CrossRefGoogle Scholar
  28. Tarkov, M. I., Merenyu, G. V., and Timchenko, L. A., 1971, The action of dinitro-ortho-cresol on the growth of certain saprophytic and pathogenic microorganisms, Gig. Sanit., 36(3):57.PubMedGoogle Scholar
  29. Verloop, A., and Ferrell, C. D., 1977, Benzoylphenyl ureas — A new group of larvicides interfering with chitin deposition, in: “ACS Symposium Series, No 37, Pesticide Chemistry in the 20th Century,” J. R. Plimmer, ed., pp. 237–270, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  30. Williams, I. H., Pepin, H. S., and Brown, M. J., 1976, Degradation of carbofuran by soil microorganisms, Butt. Environ. Contam. Toxicol., 15(2):244.CrossRefGoogle Scholar
  31. Williams, P. P., 1977, Metabolism of synthetic organic pesticides by anaerobic microorganisms, Res. Rev., 66:63.Google Scholar
  32. Wright, B. W., Lee, M. L., and Booth, G. M., 1979, Determination of triphenyltin hydroxide derivatives by capillary GC and tin-selective FPD, J. High Resol. Chrom. and Chrom. Comm., 2(4):189.CrossRefGoogle Scholar
  33. Yarbrough, J. D., 1974, Insecticide resistance in vertebrates, in: “Survival in Toxic Environments,” M. A. Q. Khan and J. P. Bederka, Jr., eds., pp. 373–398, Academic Press, Inc., New York.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. M. Booth
    • 1
  • D. J. Weber
    • 1
  • L. M. Ross
    • 1
  • S. D. Burton
    • 1
  • W. S. Bradshaw
    • 1
  • W. M. Hess
    • 1
  • J. R. Larsen
    • 1
  1. 1.Departments of Botany, Microbiology and ZoologyBrigham Young UniversityProvoUSA

Personalised recommendations