Resistance to Insecticides Due to Reduced Sensitivity of the Nervous System

  • Toshio Narahashi


In order to understand the mechanism underlying the physiological resistance of an insect to an insecticide, we must know how the insecticide exerts its toxic action. Among a number of processes involved, three factors have been regarded as playing the most important roles in insect resistance to insecticides: penetration of insecticides through the cuticle, detoxication, and sensitivity of the target site. Penetration and detoxication mechanisms are discussed in other papers of this volume.


Sodium Channel Sodium Current Giant Axon Squid Giant Axon Nerve Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. E., and Miller, T. A., 1979, Site of action of pyrethroids: Repetitive “backfiring” in flight motor units of house fly, Pestic. Biochem. Physiol., 11:218.CrossRefGoogle Scholar
  2. Babers, F. H., and Pratt, J. J., Jr., 1953, Resistance of insects to insecticides: The metabolism of injected DDT, J. Econ. Entomol., 46:977.Google Scholar
  3. Boistel, J., and Coraboeuf, E., 1954, Potentiel de membrane et potentiels d’action de nerf d’insecte recueillis à l’aide de microélectrodes intracellulaires, C. R. Acad. Sci., Paris, 238:2116.Google Scholar
  4. Briggs, G. G., Elliott, M., Farnham, A. W., and Janes, N. F., 1974, Structural aspects of the knockdown of pyrethroids, Pestic. Sci., 5:643.CrossRefGoogle Scholar
  5. Brooks, G. T., 1960, Mechanisms of resistance of the adult housefly (Musca domestica) to “cyclodiene” insecticides, Nlature, 186:96.CrossRefGoogle Scholar
  6. Browne, L. B., and Kerr, R. W., 1967, The response of the labellar taste receptors of DDT-resistant and non-resistant houseflies (Musca domestica), Entomol. Exp. Appl., 10:337.CrossRefGoogle Scholar
  7. Burt, P. E., and Goodchild, R. E., 1971, The site of action of Pyrethrin I in the nervous system of the cockroach Periplaneta americana L., Entomol. Exp. Appl., 14:179.CrossRefGoogle Scholar
  8. Camougis, G., 1973, Mode of action of pyrethrum on arthropod nerves, in: “Pyrethrum: The Natural Insecticide,” J. E. Casida, ed., pp. 211–222, Academic Press, New York.Google Scholar
  9. Clements, A. N., and May, T. E., 1977, The actions of pyrethroids upon the peripheral nervous system and associated organs in the locust, Pestic. Sci., 8:661.CrossRefGoogle Scholar
  10. Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stämpfli, R., 1976, Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation, J. Physiol., 262:729.PubMedGoogle Scholar
  11. Coraboeuf, E., and Boistel, J., 1955, Quelques aspects de la micro-physiologie nerveuse chez les insectes. Colloq. Internat. Cent. Nat. Rech. Sci. No. 67, Microphysiologie Comparée des Elements Excitables, pp. 57–72.Google Scholar
  12. Evans, M. H., 1976, End-plate potentials in frog muscle exposed to a synthetic pyrethroid, Pestic. Biochem. Physiol., 6:547.CrossRefGoogle Scholar
  13. Farley, J. M., Narahashi, T., and Holan, G., 1979, The mechanism of action of a DDT analog on the crayfish neuromuscular junction, Neurotoxicology, 1:191.Google Scholar
  14. Hall, L. M., Gitschier, J., and Strichartz, G. R., 1979, Saxitoxin binding to sodium channels from wild-type and mutant Drosophila melanogaster, 9th Ann. Mtg. Soc. Neurosci, Abstr., p. 247.Google Scholar
  15. Hille, B., 1968, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol., 51:199.PubMedCrossRefGoogle Scholar
  16. Hille, B., 1975, The receptor for tetrodotoxin and saxitoxin: A structural hypotehsis, Biophys. J., 15:615.PubMedCrossRefGoogle Scholar
  17. Hille, B., 1977, Local anesthetics: Hydrophilic and hydrophobic pathways for the drug receptor interaction, J. Gen. Physiol., 69:497.PubMedCrossRefGoogle Scholar
  18. Holan, G., 1971, Rational design of degradable insecticides, Nature, 232:644.PubMedCrossRefGoogle Scholar
  19. Kao, C. Y., and Nishiyama, A., 1965, Actions of saxitoxin on peripheral neuromuscular systems, J. Physiol., 180:50.PubMedGoogle Scholar
  20. Lund, A. E., and Narahashi, T., 1979, The effect of the insecticide tetramethrin on the sodium channel of crayfish giant axons, 9th Ann. Mtg. Soc. Neurosci. Abstr., p. 293.Google Scholar
  21. Matsumura, F., and Hayashi, M., 1966, Dieldrin: Interaction with nerve components of cockroaches, Science, 153:757.PubMedCrossRefGoogle Scholar
  22. Matsumura, F., and Hayashi, M., 1969, Dieldrin resistance. Biochemical mechanisms in the German cockroach, J. Agr. Food Chem., 17:231.CrossRefGoogle Scholar
  23. Miyake, S. S., Kearns, C. W., and Lipke, H., 1957, Distribution of DDT-dehydrochlorinase in various tissues of DDT-resistant house flies, J. Econ. Entomol., 50:359.Google Scholar
  24. Moore, J. W., Narahashi, T., and Shaw, T. I., 1967, An upper limit to the number of sodium channels in nerve membrane? J. Physiol., 188:99.PubMedGoogle Scholar
  25. Narahashi, T., 1962a, Effect of the insecticide allethrin on membrane potentials of cockroach giant axons, J. Cell. Comp. Physiol., 59:61.CrossRefGoogle Scholar
  26. Narahashi, T., 1962b, Nature of the negative after-potential increased by the insecticide allethrin in cockroach giant axons, J. Cell. Comp. Physiol., 59:67.CrossRefGoogle Scholar
  27. Narahashi, T., 1964, Insecticide resistance and nerve sensitivity, Japan. J. Med. Sci. Biol., 17:46.Google Scholar
  28. Narahashi, T., 1971, Effects of insecticides on excitable tissues, in: “Advances in Insect Physiology,” J. W. L. Beament, J. E. Treherne and V. B. Wigglesworth, eds., Vol. 8, pp. 1–93, Academic Press, London and New York.Google Scholar
  29. Narahashi, T., 1976, Effects of insecticides on nervous conduction and synaptic transmission, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 327–352, Plenum Press, New York.Google Scholar
  30. Narahashi, T., and Anderson, N. C., 1967, Mechanism of excitation block by the insecticide allethrin applied externally and internally to squid giant axons, Toxicol. Appl. Pharmacol., 10:529.PubMedCrossRefGoogle Scholar
  31. Narahashi, T., and Haas, H. G., 1967, DDT: Interaction with nerve membrane conductance changes, Science, 157:1438.PubMedCrossRefGoogle Scholar
  32. Narahashi, T., and Haas, H. G., 1968, Interaction of DDT with the components of lobster nerve membrane conductance, J. Gen. Physiol., 51:177.PubMedCrossRefGoogle Scholar
  33. Narahashi, T., and Lund, A. E., 1980, Giant axons as models for the study of the mechanism of action of insecticides, in: “Insect Neurobiology and Pesticide Action (Neurotox 79),” Proc. Soc.Google Scholar
  34. Chem. Ind. Symp., Univ. York, Sept. 3–7, 1979, pp. 497–505, Soc. Chem. Ind., London.Google Scholar
  35. Narahashi, T., and Yamasaki, T., 1960a, Mechanism of the after-potential production in the giant axons of the cockroach, J. Physiol., 151:75.Google Scholar
  36. Narahashi, T., and Yamasaki, T., 1960b, Mechanism of increase in negative after-potential by dicophanum (DDT) in the giant axons of the cockroach, J. Physiol., 152:122.Google Scholar
  37. Narahashi, T., and Yamasaki, T., 1960c, Behaviors of membrane potentials in the cockroach giant axons poisoned by DDT, J. Cell. Comp. Physiol., 55:131.CrossRefGoogle Scholar
  38. Narahashi, T., Moore, J. W., and Scott, R., 1964, Tetrodotoxin blockage of sodium conductance increase in lobster giant axons, J. Gen. Physiol., 47:965.PubMedCrossRefGoogle Scholar
  39. Narahashi, T., Anderson, N. C., and Moore, J. W., 1967a, Comparison of tetrodotoxin and procaine in internally perfused squid giant axons, J. Gen. Physiol., 50:1413.PubMedCrossRefGoogle Scholar
  40. Narahashi, T., Haas, H. G., and Therrien, E. F., 1967b, Saxitoxin and tetrodotoxin: Comparison of nerve blocking mechanism, Science, 157:1441.PubMedCrossRefGoogle Scholar
  41. Narahashi, T., Frazier, D. T., and Yamada, M., 1970, The site of action and active form of local anesthetics, I, Theory and pH experiments with tertiary compounds, J. Pharmacol. Exp. Therap., 171:32.Google Scholar
  42. Neumcke, B., Nonner, W., and Stampfli, R., 1978, Gating currents in excitable membranes, in: “Internat. Rev. Biochem., Biochemistry of Cell Walls and Membranes II,” Vol. 19, J. C. Metcalfe, ed., pp. 129–155, Univ. Park Press, Baltimore.Google Scholar
  43. Perry, A. S., and Hoskins, W. M., 1951, Detoxification of DDT as a factor in the resistance of house flies, J. Picon. Entomol., 44:850.Google Scholar
  44. Pichon, Y., 1969a, Effets du D.D.T. sur la fibre nerveuse isolée d’insecte. Étude en courant et an voltage imposés, J. Physiol., Paris, 61 (Suppl. 1):162.Google Scholar
  45. Pichon, Y., 1969b, Aspects Electriques et Ioniques du Fonctionnement Nerveux chez les Insectes, Cas Particulier de la Chaine Nerveuse Abdominale d’une Blatte Periplaneta americana. L., These, Univ. Rennes.Google Scholar
  46. Pratt, J. J., Jr., and Babers, F. H., 1953, Sensitivity to DDT of nerve ganglia of susceptible and resistant house flies, J. Econ. Entomol., 46:700.Google Scholar
  47. Ritchie, J. M., 1979, A pharmacological approach to the structure of sodium channels in myelinated axons, Ann. Rev. Neuro Sci., 2:341.CrossRefGoogle Scholar
  48. Ritchie, J. M., Rogart, R. B., and Strichartz, G. R., 1976, A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves, J. Physiol., 261:477.PubMedGoogle Scholar
  49. Smyth, T., Jr., and Roys, C. C., 1955, Chemoreception in insects and the action of DDT, Biol. Bull., 108:66.CrossRefGoogle Scholar
  50. Steinburg, J., Kearns, C. W., and Bruce, W. N., 1950, Absorption and metabolism of DDT by resistant and susceptible house flies, J. Econ. Entomol., 43:214.Google Scholar
  51. Tahori, A. S., and Hoskins, W. M., 1953, The absorption, distribution, and metabolism of DDT in DDT-resistant houseflies, J. Econ. Entomol., 46:302, 829.Google Scholar
  52. Takeno, K., Nishimura, K., Parmentier, J., and Narahashi, T., 1977, Insecticide screening with isolated nerve preparations for structure-activity relationships., Pestic. Biochem. Physiol., 7:486.CrossRefGoogle Scholar
  53. Tsukamoto, M., and Suzuki, R., 1964, Genetic analysis of DDT-resistance in two strains of the house fly Musca domestica L., Botyu-Kagaku, 29:76.Google Scholar
  54. Tsukamoto, M., Narahashi, T., and Yamasaki, T., 1965, Genetic control of low nerve sensitivity to DDT in insecticide-resistant houseflies, Botyu-Kagaku, 30:128.Google Scholar
  55. van den Bercken, J., 1977, The action of allethrin on the peripheral nervous system of the frog, Pestic. Sci., 8:692.CrossRefGoogle Scholar
  56. Wang, C. M., Narahashi, T., and Scuka, M., 1972, Mechanism of negative temperature coefficient of nerve blocking action of allethrin, J. Pharmacol. Exp. Therap., 182:442.Google Scholar
  57. Weiant, E. A., 1955, Electrophysiological and behavioral studies on DDT-sensitive and DDT-resistant house flies, Ann. Entomol. Soc. Amer., 48:489.Google Scholar
  58. Wouters, W., and van den Bercken, J., 1978, Action of pyrethroids, Gen. Pharmacol., 9:387.PubMedCrossRefGoogle Scholar
  59. Wouters, W., van den Bercken, J., and van Ginneken, A., 1977, Presynaptic action of the pyrethroid insecticide allethrin in the frog motor end plate, Europ. J. Pharmacol., 43:163.CrossRefGoogle Scholar
  60. Wu, C. H., van den Bercken, J., and Narahashi, T., 1975, The structure-activity relationship of DDT analogs in crayfish giant axons, Pestic. Biochem. Physiol., 5:142.CrossRefGoogle Scholar
  61. Wu, C. H., Oxford, G. S., Narahashi, T., and Holan, G., 1980, Interaction of a DDT-analog with the sodium channel of lobster axon, J. Pharmacol. Exp. Therap., 212:287.Google Scholar
  62. Yamasaki, T., and Ishii (Narahashi), T., 1952, Studies on the mechanism of action of insecticides (V), The effects of DDT on the synaptic transmission of the cockroach, Oyo-Kontyu (J. Nippon Soc. Appl. Entomol.), 8:111.Google Scholar
  63. Yamasaki, T., and Narahashi, T., 1957, Intracellular microelectrode recordings of resting and action potentials from the insect axon and the effects of DDT on the action potential, Studies on the mechanism of action of insecticides (XIV), Boytu-Kagaku, 22:305.Google Scholar
  64. Yamasaki, T., and Narahashi, T., 1958, Resistance of house flies to insecticides and the susceptibility of nerve to insecticides, Studies on the mechanism of action of insecticides (XVII), Botyu-Kagakuy 23:146.Google Scholar
  65. Yamasaki, T., and Narahashi, T., 1962, Nerve sensitivity and resistance to DDT in houseflies, Japan. J. Appl. Entomol. Zool., 6:293.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Toshio Narahashi
    • 1
  1. 1.Department of PharmacologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations