Advertisement

Resistance to Insecticides Due to Reduced Sensitivity of Acetylcholinesterase

  • Hiroshi Hama

Abstract

Acetylcholinesterase has been extensively investigated as the target of organophosphate and carbamate insecticides. Two types of cholinesterases are well known to be present in mammals; acetylcholinesterase, or true-cholinesterase, and butyrylcholinesterase, or pseudo-cholinesterase. The two cholinesterases are different in their function, distribution and properties, although the physiological function of pseudo-cholinesterase is still unknown (Augus-tinsson, 1948, 1971).

Keywords

AChE Activity Spider Mite Methyl Parathion Elution Pattern Body Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, W. N., 1950, Some properties of specific Cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues, Biochem. J., 46:451.PubMedGoogle Scholar
  2. Aldridge, W. N., 1975, Survey of major points of interest about reactions of cholinesterases, in: “Cholinesterases and Cholinergic Receptors,” E. Reiner, ed., pp. 225–233, Croatica Chemica Acta, Zagreb.Google Scholar
  3. Aldridge, W. N., and Reiner, E., 1969, Acetylcholinesterase. Two types of inhibition by an organophosphorus compound: One the formation of phosphorylated enzyme and the other analogous to inhibition by substrate, Biochem. J., 115:147.PubMedGoogle Scholar
  4. Aldridge, W. N., and Reiner, E., 1972, “Enzyme Inhibitors as Substrates,” North-Holland Publishing Co., Amsterdam.Google Scholar
  5. Augustinsson, K. B., 1948, Cholinesterases. A study in comparative enzymology, Acta Physiol. Scand., 15:Suppl. 52:1.Google Scholar
  6. Augustinsson, K. B., 1971, Comparative aspects of the purification and properties of cholinesterases, Bull. Wld. Hlth. Org., 44:81.Google Scholar
  7. Ayad, H., and Georghiou, G. P., 1975, Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinestase, J. Econ. Entomol., 68:295.PubMedGoogle Scholar
  8. Ballantyne, G. H., and Harrison, R. A., 1967, Genetic and biochemical comparisons of organophosphate resistance between strains of spider mites (Tetranychus species: Acari), Ent. Exp. Appl., 10:231.CrossRefGoogle Scholar
  9. Bernsohn, J., Barron, K. D., and Hess, A. R., 1962, Multiple nature of acetylcholinesterase in nerve tissue, Nature, 195:285.PubMedCrossRefGoogle Scholar
  10. Bigley, W. S., 1966, Inhibition of Cholinesterase and ali-esterase in parathion and paraoxon poisoning in the house fly, J. Eoon. Entomol., 59:60.Google Scholar
  11. Booth, G. M., and Lee, A. H., 1971, Distribution of cholinesterases in insects, Bull. Wld. Hlth. Org., 44:91.Google Scholar
  12. Booth, G. M., and Metcalf, R. L., 1970, Histochemical evidence for localized inhibition of Cholinesterase in the house fly, Ann. Ent. Soc. Amer., 63:197.Google Scholar
  13. Brady, U. E., 1970, Localization of Cholinesterase activity in housefly thoraces: Inhibition of Cholinesterase with organophosphate compounds, Ent. Exp. Appl., 13:423.CrossRefGoogle Scholar
  14. Casida, J. E., 1973, Insecticide biochemistry, Ann. Rev. Biochem., 42:259.PubMedCrossRefGoogle Scholar
  15. Devonshire, A. L., 1975, Studies of the acetylcholinesterase from houseflies (Musca domestica L.) resistant and susceptible to organophosphorus insecticides, Biochem. J., 149:463.PubMedGoogle Scholar
  16. Dudai, Y., Siiman, I., Kalderon, N., and Blumberg, S., 1972, Purification by affinity chromatography of acetylcholinesterases from electric organ tissue of the electric eel subsequent to tryptic treatment, Biochim. Biophys. Acta, 268:138.PubMedGoogle Scholar
  17. Farnham, A. W., Gregory, G. E., and Sawicki, R. M., 1966, Bioassay and histochemical studies of the poisoning and recovery of house flies (Musca domestica L.) treated with diazinon and diazoxon, Bull. Ent. Res., 57:107.CrossRefGoogle Scholar
  18. Georghiou, G. P., 1971, Isolation, characterization and re-synthesis of insecticide resistance factors in the housefly, Musca domestica, in: “Insecticide Resistance, Synergism, Enzyme Induction, Vol. II,” A. S. Tahori, ed., pp. 77–94, Gordon and Breach Science Publishers, New York.Google Scholar
  19. Georghiou, G. P., and Taylor, C. E., 1977, Pesticide resistance as an evolutionary phenomenon, Proc. XV Intern. Cong. Entomol., pp. 759–785.Google Scholar
  20. Grafius, M. A., and Millar, D. B., 1965, Reversible aggregation of acetylcholinesterase, Bioohim. Biophys. Aota, 110:540.Google Scholar
  21. Grafius, M. A., and Millar, D. B., 1967, Reversible aggregation of acetylcholinesterase. II. Interdependence of pH and ionic strength, Bioohem., 6:1034.CrossRefGoogle Scholar
  22. Hama, H., 1975, Toxicity and anticholinesterase activity of propaphos, 0,0-di-(n)-propyl-0–4-methylthiophenyl phosphate, against the resistant green rice leafhopper, Nephotettix cincticeps Uhler, Botyu-Kagaku, 40:14.Google Scholar
  23. Hama, H., 1976, Modified and normal cholinesterases in the respective strains of carbamate-resistant and susceptible green rice leaf-hoppers, Nephotettix cincticeps Uhler (Hemiptera: Cicadellidae), Appl. Ent. Zool., 11:239.Google Scholar
  24. Hama, H., 1977, Cholinesterase activity and its sensitivity to inhibitors in resistant and susceptible strains of the green rice leafhopper, Nephotettix cincticeps Uhler, Botyu-Kagaku, 42:82.Google Scholar
  25. Hama, H., 1978, Preliminary report on the existence of butyrylcholin-esterase-like enzyme in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Cicadellidae), Appl. Ent. Zool., 13:324.Google Scholar
  26. Hama, H., and Iwata, T., 1971, Insensitive Cholinesterase in the Nakagawara strain of the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Cicadellidae), as a cause of resistance to carbamate insecticides, Appl. Ent. Zool., 6:183.Google Scholar
  27. Hama, H., and Iwata, T., 1973, Resistance to carbamate insecticides and its mechanism in the green rice leafhopper, Nephotettix cincticeps Uhler, Jap. J. Appl. Ent. Zool., 17:154.CrossRefGoogle Scholar
  28. Hama, H., and Iwata, T., 1978, Studies on the inheritance of carbamate resistance in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Cicadellidae). Relationships between insensitivity of acetylcholinesterase and cross resistance to carbamate and organophosphate insecticides, Appl. Ent. Zool., 13:190.Google Scholar
  29. Hama, H., and Iwata, T., 1979, Selection of the resistant green rice leafhopper with propaphos and propoxur, Changes in resistance level and component of acetylcholinesterase, Abstract of Ann. Meeting of Pesticide Sci. Soc. Japan, Kyoto.Google Scholar
  30. Hama, H., Iwata, T., Tomizawa, C., and Murai, T., 1977, Mechanism of resistance to malathion in the green rice leafhopper, Nephotettix cincticeps Uhler, Botyu-Kagaku, 42:188.Google Scholar
  31. Hama, H., Iwata, T., and Tomizawa, C., 1979, Absorption and degradation of propoxur in susceptible and resistant green rice leafhoppers, Nephotettix cincticeps Uhler, Appl. Ent. Zool., 14:333.Google Scholar
  32. Iwata, T., and Hama, H., 1971, Green rice leafhopper, Nephotettix cincticeps Uhler, resistant to carbamate insecticides, Botyu-Kagaku, 36:174.Google Scholar
  33. Iwata, T., and Hama, H., 1972, Insensitivity of Cholinesterase in Nephotettix cincticeps resistant to carbamate and organophos-phorus insecticides, J. Econ. Entornol., 65:643.Google Scholar
  34. Iwata, T., and Hama, H., 1976, Selection of the resistant green rice leafhopper with propaphos: Developing resistance to propaphos and simultaneous restoring susceptibility to carbamate insecticides, Abstract of Ann. Meeting of Japanese Soc. Appl. Ent. Zool., Kyoto.Google Scholar
  35. Iwata, T., and Hama, H., 1977, Comparison of susceptibility to various chemicals between malathion-selected and methyl para-thion-selected strains of the green rice leafhopper, Nephotettix cincticeps Uhler, Botyu-Kagaku, 42:181.Google Scholar
  36. Kazano, H., Asakawa, M., Miyata, T., and Saito, T., 1978, Comparison of penetration rates of carbamate insecticides in carbamate-susceptible and -resistant green rice leafhoppers, Abstract of Ann. Meeting of Japanese Soc. Appl. Ent. Zool., Sendai.Google Scholar
  37. Kojima, K., Ishizuka, T., Kitakata, S., 1963, Mechanism of resistance to malathion in the green rice leafhopper, Nephotettix cincticeps, Botyu-Kagaku, 28:17.Google Scholar
  38. Krupka, R. M., and Laidler, K. J., 1961, Molecular mechanisms for hydrolytic enzyme action. II. Inhibition of acetylcholinesterase by excess substrate, J. Amer. Chem. Soc., 83:1448.CrossRefGoogle Scholar
  39. Krysan, J. L., and Chadwick, L. E., 1966, The molecular weight of Cholinesterase from the house fly, Musca domestica L., J. Insect Physiol., 12:781.CrossRefGoogle Scholar
  40. Krysan, J. L., and Kruckeberg, W. C., 1970, The sedimentation properties of Cholinesterase from a may fly (Hexagenia bilineata (Say); Ephemeroptera) and the honey bee (Apis mellifeva L.), Int. J. Biochem., 1:241.CrossRefGoogle Scholar
  41. Lee, R. M., and Batham, P., 1966, The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks (Acari), Ent. Exp. Appl., 9:13.CrossRefGoogle Scholar
  42. Massoulié, J., and Rieger, F., 1969, L’acetylcholinesterase des organes électriques de poissons (torpille et gymnote); complexes membranaires, European J. Biochem., 11:441.CrossRefGoogle Scholar
  43. Mengle, D. C., and Casida, J. E., 1960, Biochemical factors in the acquired resistance of houseflies to organophosphate insecticides, J. Agr. Food Chem., 8:431.CrossRefGoogle Scholar
  44. Metcalf, R. L., Fukuto, T. R., and Winton, M. Y., 1962, Insecticidal carbamates: Position isomerism in relation to activity of substituted phenyl N-methylcarbamates, J. Econ. Entomol., 55:889.Google Scholar
  45. Needham, P. H., and Sawicki, R. M., 1971, diagnosis of resistance to organophosphorus insecticides in Myzus persioae (Sulz.), Nature, 230:125.Google Scholar
  46. Nolan, J., and Schnitzerling, H. J., 1975, Characterization of acetylcholinesterases of acaricide-resistant and susceptible strains of the cattle tick Boophilus mioroplus (Can) 1. Extraction of the critical component and comparison with enzyme from other sources, Pestio. Biochem. Physiol., 5:178.CrossRefGoogle Scholar
  47. Nolan, J., Schnitzerling, H. J., and Schuntner, C. A., 1972, Multiple forms of acetylcholinesterase from resistant and susceptible strains of the cattle tick, Boophilus microplus (Can.), Pestic. Biochem. Physiol., 2:85.CrossRefGoogle Scholar
  48. O’Brien, R. D., 1967, “Insecticides, Action and Metabolism,” Academic Press, New York.Google Scholar
  49. O’Brien, R. D., 1976, Acetylcholinesterase and its inhibition, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 271–296, Plenum Press, New York.Google Scholar
  50. O’Brien, R. D., Tripathi, R. K., and Howell, L. L., 1978, Substrate preferences of wild and a mutant house fly acetylcholinesterase and a comparison with the bovine erythrocyte enzyme, Biochim. Biophys. Acta, 526:129.PubMedGoogle Scholar
  51. Oppenoorth, F. J., 1979, Localisation of the acetylcholinesterase gene in the housefly, Musca domestica, Ent. Exp. Appl., 25:115.CrossRefGoogle Scholar
  52. Oppenoorth, F. J., and Welling, W., 1976, Biochemistry and physiology of resistance, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 507–551, Plenum Press, New York.Google Scholar
  53. Oppenoorth, F. J., Smissaert, H. R., Welling, W., Pas, L. J. T. van der, and Hitman, K. T., 1977, Insensitive acetylcholinesterase, high glutathione-S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of house fly, Pestic. Biochem. Physiol., 7:34.CrossRefGoogle Scholar
  54. Ozaki, K., and Kurosu, Y., 1967, Resistance pattern in four strains of insecticide-resistant green rice leafhopper, Nephotettix cincticeps Uhler, collected in fields, Japan. J. Appl. Ent. Zool., 11:145.CrossRefGoogle Scholar
  55. Plapp, F. W., Jr., 1970, On the molecular biology of insecticide resistance, in: “Biochemical Toxicology of Insecticides,” R. D. O’Brien and I. Yamamoto, eds., pp. 179–192, Academic Press, New York, London.Google Scholar
  56. Plapp, F. W., Jr., 1976, Biochemical genetics of insecticide resistance, Ann. Rev. Ent., 21:179.CrossRefGoogle Scholar
  57. Plapp, F. W., Jr., and Hoyer, R. F., 1968, Insecticide resistance in the house fly: Decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance, J. Econ. Entomol., 61:1298.PubMedGoogle Scholar
  58. Plapp, F. W., Jr., and Tripathi, R. K., 1978, Biochemical genetics of altered acetylcholinesterase. Resistance to insecticides in the house fly, Biochem. Genetics, 16:1.CrossRefGoogle Scholar
  59. Roulston, W. J., Schnitzerling, H. J., and Schuntner, C. A., 1968, Acetylcholinesterase insensitivity in the Biarra strain of the cattle tick Boophilus microplus, as a cause of resistance to organophosphorus and carbamate acaricides, Aust. J. Biol. Sci., 21:759.PubMedGoogle Scholar
  60. Sawicki, R. M., 1970, Interaction between the factor delaying penetration of insecticides and the desethylation mechanism of resistance in organophosphorus-resistant houseflies, Pestic. Sci., 1:84.CrossRefGoogle Scholar
  61. Sawicki, R. M., 1973, Resynthesis of multiple resistance to organo-phosphorus insecticides from strains with factors of resistance isolated from the SKA strain of house flies, Pestic. Sci., 4:171.CrossRefGoogle Scholar
  62. Schnitzerling, H. J., Schuntner, C. A., Roulston, W. J., and Wilson, J. T., 1974, Characterization of the organophosphorus-resistant Mt. Alford, Gracemere and Silkwood strains of the cattle tick, Boophilus microplus, Aust. J. Biol. Sci., 27:397.Google Scholar
  63. Schuntner, C. A., and Roulston, W. J., 1968, A resistance mechanism in organophosphorus-resistant strains of sheep blowfly (Lueilia cuprina), Aust. J. Biol. Sci., 21:173.PubMedGoogle Scholar
  64. Smissaert, H. R., 1964, Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate, Science, 143:129.PubMedCrossRefGoogle Scholar
  65. Smissaert, H. R., Voerman, S., Oostenbrugge, L., and Renooy, N., 1970, Acetylcholinesterases of organophosphate-susceptible and -resistant spider mites, J. Agv. Food Chem., 18:66.CrossRefGoogle Scholar
  66. Steele, R. W., and Smallman, B. N., 1976a, Acetylcholinesterase from the housefly head, Molecular properties of soluble forms, Biochim. Biophys. Acta, 445:131.Google Scholar
  67. Steele, R. W., and Smallman, B. N., 1976b, Acetylcholinesterase of the house-fly head, Affinity purification and subunit composition, Biochim. Biophys. Acta, 445:147.Google Scholar
  68. Steele, R. W., and Smallman, B. N., 1976c, Organophosphate toxicity: Kinetic differences between acetylcholinesterase of the housefly thorax and head? Life Sci., 19:1937.CrossRefGoogle Scholar
  69. Steele, R. W., and Maneckjee, A., 1979, Toxicological significance of acetylcholinesterase of the housefly thorax, Pestic. Biochem. Physiol., 10:322.CrossRefGoogle Scholar
  70. Takahashi, Y., Kyomura, N., and Yamomoto, I., 1978, Mechanism of joint action of N-methyl and N-propylcarbamates for inhibition of acetylcholinesterase from resistant green rice leafhopper, Nephotettix einetieeps, J. Pestic. Sci., 3:55.Google Scholar
  71. Townsend, M. G., and Busvine, J. R., 1969, The mechanism of mala-thion-resistance in the blowfly Chvysomya putovia, Ent. Exp. Appl., 12:243.CrossRefGoogle Scholar
  72. Tripathi, R. K., 1976, Relation of acetylcholinesterase sensitivity to cross-resistance of a resistant house fly strain to organo-phosphates and carbamates, Pestic. Biochem. Physiol., 6:30.CrossRefGoogle Scholar
  73. Tripathi, R. K., and O’Brien, R. D., 1973a, Effect of organophosphates in vivo upon acetylcholinesterase isozymes from housefly head and thorax, Pestic. Biochem. Physiol., 2:418.CrossRefGoogle Scholar
  74. Tripathi, R. K., and O’Brien, R. D., 1973b, Insensitivity of acetylcholinesterase as a factor in resistance of houseflies to the organophosphate Rabon, Pestic. Biochem. Physiol., 3:495.CrossRefGoogle Scholar
  75. Tripathi, R. K., and O’Brien, R. D., 1975, The significance of multiple molecular forms of acetylcholinesterase in the sensitivity of houseflies to organophosphorus poisoning, in: “Isozymes II. Physiological Function,” C. L. Makkert, ed., pp. 395–408, Academic Press, New York.Google Scholar
  76. Tripathi, R. K., and O’Brien, R. D., 1977, Purification of acetyl-Cholinesterase from house fly brain by affinity chromatography, Biochim. Biophys. Acta, 480:382.PubMedGoogle Scholar
  77. Tripathi, R. K., Chiu, Y. C., and O’Brien, R. D., 1973, Reactivity in vitro toward substrate and inhibitors of acetylcholinesterase isozymes from electric eel electroplax and housefly brain, Pestic. Biochem. Physiol., 3:55.CrossRefGoogle Scholar
  78. Wilson, I. B., 1952, Acetylcholinesterase XII. Further studies of binding forces, J. Biol. Chem., 197:215.PubMedGoogle Scholar
  79. Yamamoto, I., Kyomura, N., and Takahashi, Y., 1977, Aryl N-propyl-carbamates, a potent inhibitor of acetylcholinesterase from the resistant green rice leafhopper, Nephotettix cincticeps, J. Pestic. Sci., 2:463.Google Scholar
  80. Yoshioka, K., and Iwata, T., 1967, Susceptibility to insecticides of the green rice leafhopper, Nephotettix cincticeps Uhler, collected from various localities, Jap. J. Appl. Ent. Zool., 11:193.CrossRefGoogle Scholar
  81. Zahavi, M., Tahori, A. S., and Stolero, F., 1970, Sensitivity of acetylcholinesterase in spider mites to organo-phosphorus compounds, Biochem. Pharmacol., 19:219.PubMedCrossRefGoogle Scholar
  82. Zon, A. Q. van and Helle, W., 1966, A search for linkage between genes for albinism and parathion resistance in Tetranyehus pacificus McGregor, Genetica, 37:181.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hiroshi Hama
    • 1
  1. 1.National Institute of Agricultural SciencesYatabe, Tsukuba, Ibaraki, 305Japan

Personalised recommendations