Enzyme Induction, Gene Amplification and Insect Resistance to Insecticides

  • Leon C. Terriere


Perhaps the most fully understood mechanism of insecticide resistance in insects is that due to increased metabolism of the toxicant. We will refer to this as biochemical resistance. It is obvious that any metabolism that inactivites an insecticide will be beneficial to the insect and that such traits will be transmitted genetically. What is not so obvious, however, is how the organism achieves the observed increase in enzyme activity. We will consider some possibilities in this chapter.


Enzyme Induction High Spin Form Microsomal Oxidase Biochemical Resistance Epoxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agosin, M., 1971, Ribonucleic acid synthesis in nuclei isolated from Musca domestica, Insect Biochem., 1:363.CrossRefGoogle Scholar
  2. Agosin, M., and Dinamarca, M. L., 1963, The effect of DDT on the level of di- and triphosphopyridine nucleotides in Triatoma infestons, Exp. Parasitol., 13:199.CrossRefGoogle Scholar
  3. Agosin, M., Scaramelli, N., Gil, L., and Letelier, M. E., 1969, Some properties of the microsomal system metabolizing DDT in Triatoma infestans, Comp. Biochem. Physiol., 29:785.CrossRefGoogle Scholar
  4. Aitio, A., 1973, Induction of UDP glucuronyltransferase in the liver and extrahepatic organs of the rat, Life Sci., 13:1705.PubMedCrossRefGoogle Scholar
  5. Alt, F. W., Kellems, R. E., Bertino, J. R., and Schimke, R. T., 1978, Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells, Jour. Biol. Chem., 253:1357.Google Scholar
  6. Baars, J. J., Jansen, M., and Breimer, D. D., 1978, The influence of phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachloro-dibenzo-p-dioxin on glutathione S-transferase activity of rat liver cytosol, Biochem. Pharmacol., 27:2487.PubMedCrossRefGoogle Scholar
  7. Baker, R. C., Coons, L. G., Mailman, R. B., and Hodgson, E., 1972, Induction of hepatic mixed-function oxidases by the insecticide, mirex, Environ. Res., 5:418.PubMedCrossRefGoogle Scholar
  8. Balazs, I., and Agosin, M., 1968, The effect of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane on ribonucleic acid metabolism in Musca domestica L., Biochem. Biophys. Acta, 157:1.PubMedGoogle Scholar
  9. Bickers, R. D., Kappas, A., and Alvares, A.P., 1974, Differences in inducibility of cutaneous and hepatic drug metabolizing enzymes and cytochrome P-450 by polychlorinated biphenyls and 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT), J. Pharmacol. Exp. Therap., 188:300.Google Scholar
  10. Bock, K. W., Frohling, W., Remmer, H., and Rexter, B., 1973, Effects of phénobarbital and 3-methylcholanthrene on substrate specificity of rat liver microsomal UDP-glucuronyltransferase, Biochem. Biophys. Acta, 327:46.PubMedGoogle Scholar
  11. Brattsten, L. B., and Wilkinson, C. F., 1973, Induction of microsomal enzymes in the southern armyworm (Prodenia eridania), Pestic. Biochem. Physiol., 3:393.CrossRefGoogle Scholar
  12. Brattsten, L. B., and Wilkinson, C. F., 1975, Properties of 5-amino-laevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armywonn (Spodoptera eridania), Biochem. J., 150:97.PubMedGoogle Scholar
  13. Brattsten, L. B., and Wilkinson, C. F., 1977, Insecticide solvents: Interference with insecticidal action, Science, 196:1211.PubMedCrossRefGoogle Scholar
  14. Brattsten, L. B., Wilkinson, C. F., and Eisner, T., 1977, Herbivore-plant interactions: Mixed-function oxidases and secondary plant substances, Science, 196:1349.PubMedCrossRefGoogle Scholar
  15. Britten, R. J., and Advidson, E. H., 1969, Gene regulation for higher cells: A theory, Science, 165:349.PubMedCrossRefGoogle Scholar
  16. Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science, 161:529.PubMedCrossRefGoogle Scholar
  17. Bunyan, P. J., and Page, J. M. J., 1973, Pesticide-induced changes in hepatic microsomal enzyme systems: Some effects of 1,1-di(p-chlorophenyl)-2-chloroethylene (DDMU) in the rat and Japanese quail, Chem. Biol. Interactions, 6:249.CrossRefGoogle Scholar
  18. Capdevila, J., Morello, A., Perry, A. S., and Agosin, M., 1973, Effect of phenobarbital and naphthalene on some of the components of the electron transport system and the hydroxylating activity of house fly microsomes, Biochemistry, 12:1445.PubMedCrossRefGoogle Scholar
  19. Cress, C. R., and Strother, A., 1974, Effects on drug metabolism of carbaryl and 1-naphthol in the mouse, Life Sci., 14:861.PubMedCrossRefGoogle Scholar
  20. Devonshire, A. L., and Sawicki, R. M., 1979, Insecticide-resistant Myzus persicae as an example of evolution by gene duplication, Nature, 280:140.CrossRefGoogle Scholar
  21. Elshourbagy, N. A., and Wilkinson, C. F., 1978, The role of DNA-dependent RNA polymerases in microsomal enzyme induction in southern armyworm (Spodoptera eridania) larvae, Insect Biochem., 8:425.CrossRefGoogle Scholar
  22. Fabacher, D. L., and Hodgson, E., 1976, Induction of hepatic mixed-function oxidase enzymes in adult and neonatal mice by Kepone and mirex, Tox. and Appl. Pharm., 38:71.CrossRefGoogle Scholar
  23. Gaines, T. B., 1969, Acute toxicity of pesticides, Tox. and Appl. Pharm., 14:515.CrossRefGoogle Scholar
  24. Gelboin, H. V., and Whitlock, J. P., Jr., 1978, On the mechanism of mixed-function oxidase induction, in: “The Induction of Drug Metabolism,” R. W. Estabrook and E. Lindenlaub, eds., pp. 67–79, F. K. Schattauer Verlag, Stuttgart — New York.Google Scholar
  25. Gelehrter, T. D., 1978, Enzyme induction in mammals — An overview, in: “The Induction of Drug Metabolism,” R. W. Estabrook and E. Lindenlaub, eds., pp. 7–24, F. K. Schattauer Verlag, Stuttgart — New York.Google Scholar
  26. Gil, D. L., Rose, H. A., Yang, R. S. H., Young, R. G., and Wilkinson, C. F., 1974, Enzyme induction by phenobarbital in the Madagascar cockroach, Gromphadorhina portentosa, Comp. Biochem. Physiol., 47B:657.CrossRefGoogle Scholar
  27. Gil, L., Fine, B. B., Dinamarca, M. L., Balazs, I., Busvine, J. R., and Agosin, M., 1968, Biochemical studies on insecticide resistant Musca domestica, Ent. Exp. and Appl., 11:15.CrossRefGoogle Scholar
  28. Hart, L. G., Shultice, R. W., and Fouts, J. R., 1963, Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat, Toxicol. and Appl. Pharmacol., 5:371.CrossRefGoogle Scholar
  29. Ilevicky, J., Dinamarca, M. L., and Agosin, M., 1964, Activity of NAD-kinase of nymph Triatoma infestans upon treatment with DDT and other compounds, Comp. Biochem. Physiol., 11:291.PubMedCrossRefGoogle Scholar
  30. Ishaaya, I., and Chefurka, W., 1971, Induction of RNA and protein biosynthesis in the house fly microsomes after DDT treatment, in: “Insecticide Resistance, Synergism, Enzyme Induction,” A. S. Tahori, ed., pp. 267–279, Gordon and Breach, New York.Google Scholar
  31. Jacob, F., 1966, Genetics of the bacterial cell, Science, 152:1470.Google Scholar
  32. Jefcoate, C. R. E., Calabrese, R. L., and Gaylor, J. L., 1970, Ligand interaction with hemoprotein P-450 III. The use of n-octylamine and ethyl isocyanide difference spectroscopy in the quantitative determination of high- and low-spin P-450, Mol. Pharmacol., 6:391.PubMedGoogle Scholar
  33. Kaplowitz, N., Kuhlenkamp, J., and Clifton, G., 1975, Drug induction of hepatic glutathione S-transferases in male and female rats, Biochem. J., 146:351.PubMedGoogle Scholar
  34. Khan, M. A. Q., and Matsumura, F., 1972, Induction of mixed-function oxidase and protein synthesis of DDT and dieldrin in German and American cockroaches, Pestic. Biochem. Physiol., 2:236.CrossRefGoogle Scholar
  35. Krampl, V., Vargova, M., and Vladar, M., 1973, Induction of hepatic microsomal enzymes after administration of a combination of heptachlor and phenobarbital, Bull. Environ. Contam. Tox., 9:156.CrossRefGoogle Scholar
  36. Lee, R. M., and Brindley, W. A., 1974, Synergist ratios, EPN detoxi-cation, lipid, and drug-induced changes in carbaryl toxicity in Megachile pacifica, Environ. Entomol., 3:899.Google Scholar
  37. Litvak, S., and Agosin, M., 1968, Protein synthesis in polysomes from house flies and the effect of 2,2-bis (p-chlorophenyl)-1,1,1-trichloroethane, Biochemistry, 7:1560.PubMedCrossRefGoogle Scholar
  38. Litvak, S., Tarrago-Litvak, L., Poblete, P., and Agosin, M., 1968, Evidence for the DDT-induced synthesis of messenger ribonucleic acid in Triatoma infestans, Comp. Biochem. Physiol., 26:45.CrossRefGoogle Scholar
  39. Lucier, G. W., McDaniel, O. S., and Hook, G. E. R., 1975, Nature of the enhancement of hepatic uridine diphosphate glucuronyltrans-ferase activity by 2,3,7,8-tetrachlorodibenzo-p-diozin in rats, Biochem. Pharmacol., 24:325.PubMedCrossRefGoogle Scholar
  40. Maa, W. C. J., and Terriere, L. C., (unpublished data).Google Scholar
  41. Madhukar, B. V., and Matsumura, F., 1979, Comparison of induction patterns of rat hepatic microsomal mixed-function oxidases by pesticides and related chemicals, Pestic. Biochem. Physiol., 11:301.CrossRefGoogle Scholar
  42. Matthews, H. B., and Casida, J. E., 1970, Properties of house fly microsomal cytochromes in relation to sex, strain, substrate specificity, and apparent inhibition and induction by synergist and insecticide chemicals, Life Sci., (pt. 1) 9:989.CrossRefGoogle Scholar
  43. Meksongsee, B., Yang, R. S., and Guthrie, F. E., 1967, Effect of inhibitors and inducers of microsomal enzymes on the toxicity of carbamate insecticides to mice and insects, J. Econ. Entornol., 60:1469.Google Scholar
  44. Nebert, D. W., 1978, Genetic aspects of enzyme induction by drugs and chemical carcinogens, in: “The Induction of Drug Metabolism,” R. W. Estabrook and E. Lindenlaub, eds., pp. 419–452, F. K. Schattauer Verlag, Stuttgart — New York.Google Scholar
  45. Nebert, D. W., and Gielen, J. E., 1972, Genetic regulation of aryl hydrocarbon hydroxylase induction in the mouse, Fed. Proc., 31:1315.PubMedGoogle Scholar
  46. Nebert, D. W., Gielen, J. E., and Goujon, F. M., 1972, Genetic expression of aryl hydrocarbon hydroxylase induction III. Changes in the binding of n-octylamine to cytochrome P-450, Mol. Pharmacol., 8:651.PubMedGoogle Scholar
  47. Oesch, F., Morris, N., and Daly, J. W., 1973, Genetic expression of the induction of epoxide hydrase and aryl hydrocarbon hydroxylase activities in the mouse by phenobarbital or 3-methyl-cholanthrene, Mol. Pharmacol., 9:692.Google Scholar
  48. Omura, T., 1978, Biosynthesis and drug-induced increase of microsomal enzymes, in: “The Induction of Drug Metabolism,” R. W. Estabrook and E. Lindenlaub, eds., pp. 161–175, F. K. Schattauer Verlag, Stuttgart — New York.Google Scholar
  49. Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature, J. Biol. Chem., 239:2370.PubMedGoogle Scholar
  50. Pantuck, E. J., Hsiao, K. C., Loub, W. D., Wattenberg, L. W., Kuntzman, R., and Conney, A. H., 1976, Stimulatory effect of vegetables on intestinal drug metabolism in the rat, J. Pharm. Exper. Ther., 198:278.Google Scholar
  51. Perry, A. S., Dale, W. E., and Buckner, A. J., 1971, Induction and repression of microsomal mixed-function oxidases and cytochrome P-450 in resistant and susceptible house flies, Pestic. Biochem. Physiol., 1:131.CrossRefGoogle Scholar
  52. Poland, A., and Glover, E., 1973, 2,3,7,8-tetrachlorodibenzo-p-dioxin: A potent inducer of ∂-aminolevulinic acid synthetase, Science, 179:476.Google Scholar
  53. Poland, A., and Glover, E., 1974, Comparison of 2,3,7,8-tetrachloro-benzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene, Mol. Pharmacol., 10:349.PubMedGoogle Scholar
  54. Poland, A., Glover, E., Kende, A. S., DeCamp, M., and Giandomenico, C. M., 1976, 3,4,3’,4’-tetrachloro azoxybenzene and azobenzene: Potent inducers of aryl hydrocarbon hydroxylase, Science, 194:627.PubMedCrossRefGoogle Scholar
  55. Puyear, R. L., and Paulson, G. D., 1972, Effect of carbaryl (1-naphthyl N-methyicarbamate) on pentobarbital-induced sleeping time and some liver microsomal enzymes in white leghorn cockerels, Toxicol. Appl. Pharmacol., 22:621.PubMedCrossRefGoogle Scholar
  56. Rose, H., Yu, S. J., and Terriere, L. C., (unpublished data).Google Scholar
  57. Schimke, R. T., Kaufman, R. J., Alt, F. W., Kellems, R. F., 1978, Gene amplification and drug resistance in cultured murine cells, Science, 202:1051.PubMedCrossRefGoogle Scholar
  58. Sell, J. L., and Davison, K. L., 1973, Changes in the activities of hepatic microsomal enzymes caused by DDT and dieldrin, Fed. Proc, 32:2003.Google Scholar
  59. Terriere, L. C., and Yu, S. J., 1974, The induction of detoxifying enzymes in insects, J. Agr. Food Chem., 22:366.CrossRefGoogle Scholar
  60. Terriere, L. C., and Yu, S. J., 1976, Microsomal oxidases in the flesh fly (Sarcophaga builata, Parker) and the black blow fly (Phormia regina, Meigen), Pestic. Biochem. Physiol., 6:223.CrossRefGoogle Scholar
  61. Terriere, L. C., Yu, S. J., and Hoyer, R. F., 1971, Induction of microsomal oxidase in F1 hybrids of a high and a low oxidase house fly strain, Science, 171:581.PubMedCrossRefGoogle Scholar
  62. Thongsinthusak, T., and Krieger, R. I., 1974, Inhibitory and inductive effects of piperonyl butoxide on dihydroisodrin hydroxyla-tion in vivo and in vitro in black cutworm (Agrotis ypsilon) larvae, Life Sci., 14:2131.PubMedCrossRefGoogle Scholar
  63. Tsang, V. C. W., and Agosin, M., 1976, Phenobarbital stimulation of house fly chromatin template activity, Insect Biochem., 6:425.CrossRefGoogle Scholar
  64. Turner, J. C., and Green, R. S., 1974, Effect of hexachlorobenzene on microsomal enzyme systems, Biochem. Pharmacol., 23:2387.PubMedCrossRefGoogle Scholar
  65. Turnquist, R. L., and Brindley, W. A., 1975, Microsomal oxidase activities in relation to age and chlorcyclizine induction in American cockroach, Periplaneta americana, fat body, midgut, and hindgut, Pestic. Biochem. Physiol., 5:211.CrossRefGoogle Scholar
  66. Walker, C. R., and Terriere, L. C., 1970, Induction of microsomal oxidases by dieldrin in Musca domestica, Ent. Exp. Appl., 13:260.CrossRefGoogle Scholar
  67. Wongkobrat, A., and Dahlman, D. L., 1976, Larval Manduca sexta hemolymph carboxylesterase activity during chronic exposure to insecticide-containing diets, J. Econ. Entomol., 69(2):237.Google Scholar
  68. Yu, S. J., and Terriere, L. C., 1973, Phenobarbital induction of detoxifying enzymes in resistant and susceptible house flies, Pestic. Biochem. Physiol., 3:141.CrossRefGoogle Scholar
  69. Yu, S. J., and Terriere, L. C., 1974, A possible role for microsomal oxidases in metamorphosis and reproduction in the house fly, J. Insect Physiol., 20:1901.PubMedCrossRefGoogle Scholar
  70. Yu, S. J., and Terriere, L. C., 1975, Activities of hormone metabolizing enzymes in house flies treated with some substituted urea growth regulators, Life Sci., 17:619.PubMedCrossRefGoogle Scholar
  71. Yu, S. J., and Terriere, L. C., 1977, Ecdysone metabolism by soluble enzymes from three species of Diptera and its inhibition by the insect growth regulator TH-6040, Pestic. Biochem. Physiol., 7:48.CrossRefGoogle Scholar
  72. Yu, S. J., and Terriere, L. C., 1978, Juvenile hormone epoxide hydrase in house flies, flesh flies and blow flies, Insect Biochem., 8:349.CrossRefGoogle Scholar
  73. Yu, S. J., and Terriere, L. C., 1979, Cytochrome P-450 in insects. I. Differences in the forms present in insecticide resistant and susceptible house flies, Pestic. Biochem. Physiol., 12:239.CrossRefGoogle Scholar
  74. Yu, S. J., Berry, R. E., and Terriere, L. C., 1979, Host plant stimulation of detoxifying enzymes in a phytophagous insect, Pestic. Biochem. Physiol., 12:280.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Leon C. Terriere
    • 1
  1. 1.Department of EntomologyOregon State UniversityCorvallisUSA

Personalised recommendations