Skip to main content

Theoretical Models for the Interpretation of Light Scattering by Particles Present in Combustion Systems

  • Chapter
Soot in Combustion Systems and Its Toxic Properties

Part of the book series: NATO Conference Series ((MASC,volume 7))

  • 183 Accesses

Abstract

Particles are almost always present in practical combustion systems in form of input fuel and/or combustion products. Submicronic soot particles are exclusively present only in fuel rich flames produced by gaseous fuels, whereas other classes of particulates have to be considered simultaneously in the combustion of liquid fuels and pulverized coals. These are the fuel droplets or the coal particles in the micronic range, the cenospheres produced by incomplete oxidation of heavy hydrocarbons fuels or char, the micronic and submicronic inorganic components of the ashes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. C. Van de Hulst, “Light Scattering by Small Particles”, J. Wiley, New York (1957)

    Google Scholar 

  2. M. Kerker, “The Scattering of Light and Other Electromagnetic Radiations”, Academic Press, New York (1969)

    Google Scholar 

  3. A. R. Jones, Scattering of electromagnetic radiations in particulate laden fluids, Progr. En. Comb. Sci. 5: 73 (1979)

    Article  CAS  Google Scholar 

  4. F. Beretta, A. Cavaliere and A. D’Alessio, Experimental and theoretical analysis of the angular pattern distribution and polarization state of the light scattered by isothermal sprays and oil flames. ASME Winter Meeting, Two Phase Combustion, November (1981)

    Google Scholar 

  5. R. G. Pinnick, D. E. Carroll and D. J. Hoffmann, Polarized light scattered from monodisperse randomly oriented nonspherical aerosol particles measurements, Appl. Opt. 15: 384 (1976)

    CAS  Google Scholar 

  6. R. H. Zerull, Scattering measurements of dielectric and absorbing nonspherical particles, Beiträge zu Physik der Atmosphäre 49: 168 (1976)

    Google Scholar 

  7. F. Perrin, Polarization of light scattered by isotropic opalescent media, J. Chem. Phys. 10: 414 (1942)

    Article  Google Scholar 

  8. R. J. Perry, A. J. Hunt and D. R. Huffman, Experimental determinations of Mueller scattering matrices for nonspherical particles, Appl. Opt. 17: 2700 (1978)

    CAS  Google Scholar 

  9. H. Senftleben and E. Benedict, Uber die Optischen Konstanten and die Strahlungsgesetze der Kohle, Annalen der Physik 54: 65 (1918)

    Google Scholar 

  10. E. A. Taft and H. R. Philipp, Optical properties of graphite, Phys. Rev. 138: A197 (1965)

    Article  Google Scholar 

  11. J. G. Carter, R. H. Huebner, R. N. Hamm and R. D. Birkhoff, Optical properties of graphite in the region 1100 to 3000 A, Phys. Rev. 137: A639 (1965)

    Article  Google Scholar 

  12. W. H. Dalzell and A. F. Sarofim, Optical constants of soot and their application to heat-flux calculations, J. Heat Transfer (Trans. ASME Ser. C) 91: 100 (1969)

    Article  Google Scholar 

  13. J. Jànzen, The refractive index of colloidal carbon, J. Coll. Interf. Science 69: 436 (1979)

    Article  Google Scholar 

  14. S. C. Lee and C. L. Tien, Optical constants of soot in hydrocarbon flames, 18th Symp. (Int’l) on Combustion, The Combustion Institute, Pittsburgh (1981)

    Google Scholar 

  15. S. C. Graham, The refractive indices of isolated and of aggregated soot particles, Comb. Sci. Tech. 9: 159 (1974)

    Google Scholar 

  16. W. G. Egan and T. Hilgeman, Anomalous refractive index of submicron-sized particulates, Appl. Opt. 19: 3724 (1980)

    CAS  Google Scholar 

  17. A. B. Pluchino, S. S. Goldberg, J. M. Dowling and C. M. Randall, Refractive-index measurements of single micron-sized carbon particles, Appl. Opt. 19: 3370 (1980)

    CAS  Google Scholar 

  18. E. A. Taft, Personal communication (1969)

    Google Scholar 

  19. L. Smoot, M. D. Horton and G. A. Williams, Propagation of Laminar pulverized coal size flames, 17th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh, p. 375 (1979)

    Google Scholar 

  20. H. N. Jaffè and M. Orchin,“Theory and application of ultraviolet spectroscopy”,J. Wiley, New York (1962)

    Google Scholar 

  21. T. F. Wall, A. Lowe, L. J. Wibberley and I. McC. Stewart, Mineral matter in coal and the thermal performance of large boilers, Prog. Energy Combust. Sci. 5: 1 (1979)

    Article  CAS  Google Scholar 

  22. P. J. Wyatt, Some chemical, physical and optical properties of fly ash particles, Appl. Opt. 19: 975 (1980)

    CAS  Google Scholar 

  23. A. Lowe, I. McC. Stewart and T. F. Wall, The measurement and interpretation of radiation from fly ash particles in large pulverised coal flames, 17th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh, p. I05 (1979)

    Google Scholar 

  24. A. F. Sarofim, Comment to ref. 23, p. 113

    Google Scholar 

  25. R. C. Flagan, Submicron particles from coal combustion, 17th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh, p. 97 (1979)

    Google Scholar 

  26. K. Sassen, Infrared (10.6 m) scattering and extinction in laboratory water and ice clouds, Appl. Opt. 20: 185 (1981)

    CAS  Google Scholar 

  27. J. Embury, Absorption by small non-spherical particles in the Rayleigh region, in: “Light Scattering by Irregularly Shaped Particles”, D. W. Scherman, ed., Plenum Press, New York, p. 97 (1980)

    Chapter  Google Scholar 

  28. D. R. Huffman and C. F. Bohren, Infrared absorption spectra of non-spherical particles treated in the Rayleigh-ellipsoid approximation, in: “Light Scattering by Irregularly Shaped Particles”, D. A. Scherman, ed., Plenum Press, New York,p. 97 (1980)

    Google Scholar 

  29. P. Ferrara, Analisis teorico-sperimentale delle forme e polidispersione di particelle carboniose in fiamme di metano ed ossigeno premiscelati con misure ottiche “in situ”, Tesi di Laurea in Ingegneria Chimica, Napoli (1977)

    Google Scholar 

  30. A. D’Alessio, Laser light scattering and fluoresence diagnostics of rich flames produced by gaseous and liquid fuels, in: “Particulate Carbon: Formation During Combustion”, D. C. Siegla and G. W. Smith, eds., Plenum Press, New York, in press

    Google Scholar 

  31. J. R. Hodkinson and I. Greenleaves, Computations of light-scattering and extinction by spheres according to diffraction and geometrical optics, and some comparisons with the Mie theory, J. Opt. Soc. Am. 53: 577 (1963)

    Article  Google Scholar 

  32. H. M. Nussenzveigh, Complex angular momentum theory of the rainbow and the glory, J. Opt. Soc. Am. 69: 1068 (1979)

    Article  Google Scholar 

  33. J. V. Dave, Effects of coarseness of the integration increment on the calculation of the radiation scattered by polydispersed aerosols, Appl. Opt. 8: 1161 (1969)

    CAS  Google Scholar 

  34. G. Viola, Analisi teorica delle proprietà di diffusione della luce da particelle di gasolio e di fuliggine, nell’ambito della teoria di Lorenz-Mie, Tesi di Laurea in Ingegneria Chimica, Napoli (1981)

    Google Scholar 

  35. K. Liou and J. E. Hansen, Intensity an polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory, J. Atm. Sci. 28: 995 (1971)

    Article  Google Scholar 

  36. A. J. Hunt and D. R. Huffman, A polarization modulated light scattering instrument for determining liquid aerosol properties, Japan J. Appl. Phys. 14 (Suppl): 14–1 (1975)

    Google Scholar 

  37. R. Eiden, Determination of the complex index of refraction of spherical aerosol particles, Appl. Opt. 19: 962 (1980)

    Google Scholar 

  38. W. Heller and M. Nakagaki, Light scattering of spheroids. Depolarization of the scattered light, J. Chem. Phys. 61: 3619 (1974)

    Article  CAS  Google Scholar 

  39. S. Asano and M. Sato, Light scattering by randomly oriented spheroidal particles, Appl. Opt. 19: 962 (1980)

    CAS  Google Scholar 

  40. A. C. Holland and G. Gagne, The scattering of polarized light by polydisperse systems of irregular particles, Appl. Opt. 9: 1113 (1970)

    CAS  Google Scholar 

  41. J. B. Pollack and J. N. Cuzzi, Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols, J. Atm. Sci. 37: 868 (1980)

    Article  Google Scholar 

  42. R. H. Giese, K. Weiss, R. H. Zerull and T. Ono, Large fluffy particles: a possible explanation of the optical properties of interplanetary dust

    Google Scholar 

  43. Astron. Astrophys. 65: 265 (1978)

    Google Scholar 

  44. J. C. Ravey, Light scattering by aggregates of small dielectric or absorbing spheres, J. Coll. Interf. Sci. 46: 139 (1974)

    Article  Google Scholar 

  45. A. R. Jones, Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation, Proc. R. Soc. Lond. A366: 111 (1979)

    Article  CAS  Google Scholar 

  46. F. Beretta, A. Cavaliere, A. Ciajolo, A. Di Lorenzo, C. Langella and C. Noviello, Laser light scattering, emission/extinction spectroscopy and thermogravimetric analysis in the study of soot behaviour in oil spray flames, 18th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh (1981)

    Google Scholar 

  47. F. Beretta, A. Cavaliere, A. D’Alessio, C. Noviello and C. Scodellaro, Investigation on oil spray flame with laser light scattering and extinction techniques, La Rivista dei Combustibili 34: 383 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

D’Alessio, A., Cavaliere, A., Menna, P. (1983). Theoretical Models for the Interpretation of Light Scattering by Particles Present in Combustion Systems. In: Lahaye, J., Prado, G. (eds) Soot in Combustion Systems and Its Toxic Properties. NATO Conference Series, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4463-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4463-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4465-0

  • Online ISBN: 978-1-4684-4463-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics