Theoretical Models for the Interpretation of Light Scattering by Particles Present in Combustion Systems

  • Antonio D’Alessio
  • Antonio Cavaliere
  • Pietro Menna
Part of the NATO Conference Series book series (NATOCS, volume 7)


Particles are almost always present in practical combustion systems in form of input fuel and/or combustion products. Submicronic soot particles are exclusively present only in fuel rich flames produced by gaseous fuels, whereas other classes of particulates have to be considered simultaneously in the combustion of liquid fuels and pulverized coals. These are the fuel droplets or the coal particles in the micronic range, the cenospheres produced by incomplete oxidation of heavy hydrocarbons fuels or char, the micronic and submicronic inorganic components of the ashes.


Soot Particle Combustion System Complex Refractive Index Brewster Angle Fuel Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Van de Hulst, “Light Scattering by Small Particles”, J. Wiley, New York (1957)Google Scholar
  2. 2.
    M. Kerker, “The Scattering of Light and Other Electromagnetic Radiations”, Academic Press, New York (1969)Google Scholar
  3. 3.
    A. R. Jones, Scattering of electromagnetic radiations in particulate laden fluids, Progr. En. Comb. Sci. 5: 73 (1979)CrossRefGoogle Scholar
  4. 4.
    F. Beretta, A. Cavaliere and A. D’Alessio, Experimental and theoretical analysis of the angular pattern distribution and polarization state of the light scattered by isothermal sprays and oil flames. ASME Winter Meeting, Two Phase Combustion, November (1981)Google Scholar
  5. 5.
    R. G. Pinnick, D. E. Carroll and D. J. Hoffmann, Polarized light scattered from monodisperse randomly oriented nonspherical aerosol particles measurements, Appl. Opt. 15: 384 (1976)Google Scholar
  6. 6.
    R. H. Zerull, Scattering measurements of dielectric and absorbing nonspherical particles, Beiträge zu Physik der Atmosphäre 49: 168 (1976)Google Scholar
  7. 7.
    F. Perrin, Polarization of light scattered by isotropic opalescent media, J. Chem. Phys. 10: 414 (1942)CrossRefGoogle Scholar
  8. 8.
    R. J. Perry, A. J. Hunt and D. R. Huffman, Experimental determinations of Mueller scattering matrices for nonspherical particles, Appl. Opt. 17: 2700 (1978)Google Scholar
  9. 9.
    H. Senftleben and E. Benedict, Uber die Optischen Konstanten and die Strahlungsgesetze der Kohle, Annalen der Physik 54: 65 (1918)Google Scholar
  10. 10.
    E. A. Taft and H. R. Philipp, Optical properties of graphite, Phys. Rev. 138: A197 (1965)CrossRefGoogle Scholar
  11. 11.
    J. G. Carter, R. H. Huebner, R. N. Hamm and R. D. Birkhoff, Optical properties of graphite in the region 1100 to 3000 A, Phys. Rev. 137: A639 (1965)CrossRefGoogle Scholar
  12. 12.
    W. H. Dalzell and A. F. Sarofim, Optical constants of soot and their application to heat-flux calculations, J. Heat Transfer (Trans. ASME Ser. C) 91: 100 (1969)CrossRefGoogle Scholar
  13. 13.
    J. Jànzen, The refractive index of colloidal carbon, J. Coll. Interf. Science 69: 436 (1979)CrossRefGoogle Scholar
  14. 14.
    S. C. Lee and C. L. Tien, Optical constants of soot in hydrocarbon flames, 18th Symp. (Int’l) on Combustion, The Combustion Institute, Pittsburgh (1981)Google Scholar
  15. 15.
    S. C. Graham, The refractive indices of isolated and of aggregated soot particles, Comb. Sci. Tech. 9: 159 (1974)Google Scholar
  16. 16.
    W. G. Egan and T. Hilgeman, Anomalous refractive index of submicron-sized particulates, Appl. Opt. 19: 3724 (1980)Google Scholar
  17. 17.
    A. B. Pluchino, S. S. Goldberg, J. M. Dowling and C. M. Randall, Refractive-index measurements of single micron-sized carbon particles, Appl. Opt. 19: 3370 (1980)Google Scholar
  18. 18.
    E. A. Taft, Personal communication (1969)Google Scholar
  19. 19.
    L. Smoot, M. D. Horton and G. A. Williams, Propagation of Laminar pulverized coal size flames, 17th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh, p. 375 (1979)Google Scholar
  20. 20.
    H. N. Jaffè and M. Orchin,“Theory and application of ultraviolet spectroscopy”,J. Wiley, New York (1962)Google Scholar
  21. 21.
    T. F. Wall, A. Lowe, L. J. Wibberley and I. McC. Stewart, Mineral matter in coal and the thermal performance of large boilers, Prog. Energy Combust. Sci. 5: 1 (1979)CrossRefGoogle Scholar
  22. 22.
    P. J. Wyatt, Some chemical, physical and optical properties of fly ash particles, Appl. Opt. 19: 975 (1980)Google Scholar
  23. 23.
    A. Lowe, I. McC. Stewart and T. F. Wall, The measurement and interpretation of radiation from fly ash particles in large pulverised coal flames, 17th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh, p. I05 (1979)Google Scholar
  24. 24.
    A. F. Sarofim, Comment to ref. 23, p. 113Google Scholar
  25. 25.
    R. C. Flagan, Submicron particles from coal combustion, 17th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh, p. 97 (1979)Google Scholar
  26. 26.
    K. Sassen, Infrared (10.6 m) scattering and extinction in laboratory water and ice clouds, Appl. Opt. 20: 185 (1981)Google Scholar
  27. 27.
    J. Embury, Absorption by small non-spherical particles in the Rayleigh region, in: “Light Scattering by Irregularly Shaped Particles”, D. W. Scherman, ed., Plenum Press, New York, p. 97 (1980)CrossRefGoogle Scholar
  28. 28.
    D. R. Huffman and C. F. Bohren, Infrared absorption spectra of non-spherical particles treated in the Rayleigh-ellipsoid approximation, in: “Light Scattering by Irregularly Shaped Particles”, D. A. Scherman, ed., Plenum Press, New York,p. 97 (1980)Google Scholar
  29. 29.
    P. Ferrara, Analisis teorico-sperimentale delle forme e polidispersione di particelle carboniose in fiamme di metano ed ossigeno premiscelati con misure ottiche “in situ”, Tesi di Laurea in Ingegneria Chimica, Napoli (1977)Google Scholar
  30. 30.
    A. D’Alessio, Laser light scattering and fluoresence diagnostics of rich flames produced by gaseous and liquid fuels, in: “Particulate Carbon: Formation During Combustion”, D. C. Siegla and G. W. Smith, eds., Plenum Press, New York, in pressGoogle Scholar
  31. 31.
    J. R. Hodkinson and I. Greenleaves, Computations of light-scattering and extinction by spheres according to diffraction and geometrical optics, and some comparisons with the Mie theory, J. Opt. Soc. Am. 53: 577 (1963)CrossRefGoogle Scholar
  32. 32.
    H. M. Nussenzveigh, Complex angular momentum theory of the rainbow and the glory, J. Opt. Soc. Am. 69: 1068 (1979)CrossRefGoogle Scholar
  33. 33.
    J. V. Dave, Effects of coarseness of the integration increment on the calculation of the radiation scattered by polydispersed aerosols, Appl. Opt. 8: 1161 (1969)Google Scholar
  34. 34.
    G. Viola, Analisi teorica delle proprietà di diffusione della luce da particelle di gasolio e di fuliggine, nell’ambito della teoria di Lorenz-Mie, Tesi di Laurea in Ingegneria Chimica, Napoli (1981)Google Scholar
  35. 35.
    K. Liou and J. E. Hansen, Intensity an polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory, J. Atm. Sci. 28: 995 (1971)CrossRefGoogle Scholar
  36. 36.
    A. J. Hunt and D. R. Huffman, A polarization modulated light scattering instrument for determining liquid aerosol properties, Japan J. Appl. Phys. 14 (Suppl): 14–1 (1975)Google Scholar
  37. 37.
    R. Eiden, Determination of the complex index of refraction of spherical aerosol particles, Appl. Opt. 19: 962 (1980)Google Scholar
  38. 38.
    W. Heller and M. Nakagaki, Light scattering of spheroids. Depolarization of the scattered light, J. Chem. Phys. 61: 3619 (1974)CrossRefGoogle Scholar
  39. 39.
    S. Asano and M. Sato, Light scattering by randomly oriented spheroidal particles, Appl. Opt. 19: 962 (1980)Google Scholar
  40. 40.
    A. C. Holland and G. Gagne, The scattering of polarized light by polydisperse systems of irregular particles, Appl. Opt. 9: 1113 (1970)Google Scholar
  41. 41.
    J. B. Pollack and J. N. Cuzzi, Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols, J. Atm. Sci. 37: 868 (1980)CrossRefGoogle Scholar
  42. 42.
    R. H. Giese, K. Weiss, R. H. Zerull and T. Ono, Large fluffy particles: a possible explanation of the optical properties of interplanetary dustGoogle Scholar
  43. Astron. Astrophys. 65: 265 (1978)Google Scholar
  44. 43.
    J. C. Ravey, Light scattering by aggregates of small dielectric or absorbing spheres, J. Coll. Interf. Sci. 46: 139 (1974)CrossRefGoogle Scholar
  45. 44.
    A. R. Jones, Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation, Proc. R. Soc. Lond. A366: 111 (1979)CrossRefGoogle Scholar
  46. 45.
    F. Beretta, A. Cavaliere, A. Ciajolo, A. Di Lorenzo, C. Langella and C. Noviello, Laser light scattering, emission/extinction spectroscopy and thermogravimetric analysis in the study of soot behaviour in oil spray flames, 18th Symp. (Int’l) on Comb., The Combustion Institute, Pittsburgh (1981)Google Scholar
  47. 46.
    F. Beretta, A. Cavaliere, A. D’Alessio, C. Noviello and C. Scodellaro, Investigation on oil spray flame with laser light scattering and extinction techniques, La Rivista dei Combustibili 34: 383 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Antonio D’Alessio
    • 1
  • Antonio Cavaliere
    • 1
  • Pietro Menna
    • 1
  1. 1.Istituto di Ricerche sulla CombustioneC.N.R. Istituto di Chimica Industriale e Impianti Chimici UniversitàNaplesItaly

Personalised recommendations