Novel Applications of Monoclonal Antibodies

  • Joanne Martinis
  • Gary S. David
  • Richard M. Bartholomew
  • Robert Wang
Part of the Basic Life Sciences book series


The rationale for hybridoma technology is the inherent properties of the mammalian immune system: the antibody response to a foreign antigen is clonal, committed, and heterogeneous. Although a given antibody producing cell will secrete an antibody of one, and only one, specificity regardless of subsequent exposure to another antigen, any given antigen will stimulate many independent antibody producing cells, resulting in the heterogeneous, polyclonal antibody response observed in immune serum (Fig. 1). If an individual antibody producing cell could be immortalized, it would then make homogeneous monoclonal antibody indefinitely. This is essentially the hybridoma process (Fig. 2). As shown by Kohler and Milstein in 1975 [1], when a lymphocyte secreting a specific antibody is fused with a myeloma cell the resulting hybrid shows dominant expression of two critical parental traits, specific antibody production (from the lymphocyte) and immortal growth (from the myeloma). The ability to immortalize specific antibody producing cells allows the dissection of the immune response and the production of antibodies with precisely defined characteristics. In turn, the ability to select such antibodies opens the door to novel applications in diagnostics, therapeutics, and separation technology.


Polyclonal Antiserum Prostatic Acid Phosphatase Immunometric Assay Hybrid Molecule Immunoaffinity Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kphler, G., Milstein, C Continuous cultures of fused cells secreting antibody of pre-defined specificity. Nature 256: 485–497 (1975).Google Scholar
  2. 2.
    Vaitukaitis, J. L., Braunstein, G. D., Ross, G. T A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am. J. Obstet. Gynecol. 113: 751–757 (1972).Google Scholar
  3. 3.
    Storring, P. L, Gaines-Das, R. E., Bangham, D. R International reference preparation of human chorionic gonadotropin for immunoassay: Potency estimates in various bioassay and protein binding assays; and international reference preparations of the a and 3 subunits of human chorionic gonadotropin for immuno-assay. J. Endocrinol. 84: 295–310 (1980).Google Scholar
  4. 4.
    Reuter, A. M., Schoonbrood, J., Franchimont, P Specific radioimmunoassay of HCG and its a and g subunits: Methods and results. In Cancer Related Antigens, P. Franchimont, Ed., Elsevier-North Holland Biomedical Press, Amsterdam and New York, pp. 237–250 (1976).Google Scholar
  5. 5.
    Rubenstein, K. E., R. S. Schneider, and E. F. Ullman. “Homogeneous” enzyme immunoassay. A new immunochemical technique. Biochem. Biophys. Res. Commun. 47: 846–851 (1972).CrossRefGoogle Scholar
  6. 6.
    Ballou, B., G. Levine, T.R. Hakala, and D. Solter. Tumor location detected with radioactively labeled monoclonal antibody and external scintigraphy. Science 206: 844–847 (1979).CrossRefGoogle Scholar
  7. 7.
    Palmer, J. L., Nisonoff, A Science 143: 376 (1973).Google Scholar
  8. 8.
    J. F. Kearney, A. Radbrach, B. Liesegang, K. Rajenaky A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J. Immunol. 123: 1548–1550 (1979).Google Scholar
  9. 9.
    Littlefield, J. W Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145: 709–710 (1964).CrossRefGoogle Scholar
  10. 10.
    Wang, R., E. D. Sevier, R. A., Risfeld, G. S. David Semi-automatic solid-phase radioimmunoassay for carcino- embryonic antigens. J. Immunol. Methods 18: 157–164 (1977).CrossRefGoogle Scholar
  11. 11.
    Ornstein, L Disc electrophoresis-I. Background and theory. Ann. N.Y. Acad. Sci. 121: 321–349 (1964).Google Scholar
  12. 12.
    Davis, B. J Disc electrophoresis-II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121: 404–427 (1964).CrossRefGoogle Scholar
  13. 13.
    Alexander, I., D. I. C. Kells, K. J. Dorrington, M. Klein. Mol. Immunol. 17: 1351 (1980).CrossRefGoogle Scholar
  14. 14.
    Watt, R. M., Voss, E. W. Jr. J. Biol. Chem. 254: 7150 (1979).Google Scholar
  15. 15.
    Laver, W. G., W. G. Gerhard, R. G. Webster, M. E. Frankel, G. M. Air. Proc. Natl. Acad. Sci. USA, 76: 1425–1429 (1979).CrossRefGoogle Scholar
  16. 16.
    Akparov, V. KH., Stepanov, V.M J. Chromatograph, 155: 329–336. (1978).CrossRefGoogle Scholar
  17. 17.
    Rudikoff, S., Giusti, A. M., Cook, W. D., Sharff, M. D Proc. Natl. Acad. Sci. USA 79: 1979–1983 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Joanne Martinis
    • 1
  • Gary S. David
    • 1
  • Richard M. Bartholomew
    • 1
  • Robert Wang
    • 1
  1. 1.Hybritech IncorporatedSan DiegoUSA

Personalised recommendations