Monoclonal Antibodies as Physiologic Probes

  • M. Mudgett-Hunter
  • G. P. Budzik
  • P. K. Donahoe
  • B. A. Khaw
  • M. N. Margolies
  • E. C. Ridgeway
  • E. Haber
Part of the Basic Life Sciences book series


Clinicians and research scientists alike have for years utilized the immune response to generate antibodies to probe physiologic and biochemical systems. Polyclonal antibody found in the course of the humoral response to an antigen may detect, quantify, and localize small amounts of material in complex mixtures. Were it not for the heterogeneity and unpredictability of the immune reponse, immunologic assays might have had an even greater application. With the introduction of somatic cell fusion most of the problems associated with polyclonal antisera and their application to basic and clinical questions are likely to be overcome.


Glycoprotein Hormone Cardiac Myosin Diethylene Triamine Pentaacetic Acid Experimental Myocardial Infarction Mullerian Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohler, G., Milstein, C 1975. Continuous cultures of fused cells secreting antibody of pre-defined specificity. Nature 256: 495–497.CrossRefGoogle Scholar
  2. 2.
    Yelton, D. E., Scharff, M. D 1981. Monoclonal antibodies: A powerful new tool in biology and medicine. Ann. Rev. Biochem. 50: 657–680.CrossRefGoogle Scholar
  3. 3.
    Hoffman, B. F., J. T. Bigger, Jr. 1980. Digitalis and allied cardiac glycosides. In The Pharmacological Basis of Therapeutics. 6th edition. ( A. G. Gilman, Y. S. Goodman, and A. Gilman, Eds.) MacMillan, New York. pp 729–760.Google Scholar
  4. 4.
    Smith, T. W., E. Haber 1973. Digitalis. New Engl. J. Med. 289:945, 1010, 1063, 1125.Google Scholar
  5. 5.
    Smith, T. W., V. P. Butler, Jr., E. Haber. 1969. Determination of therapeutic and toxic serum digoxin concentrations by radioimmunoassay. New Engl. J. Med. 281: 1212–1216.Google Scholar
  6. 6.
    Mudgett-Hunter, M., M. N. Margolies, A. Ju, E. Haber. 1982. High affinity monoclonal antibodies to the cardiac glycoside digoxin. J. Immunol., (in press).Google Scholar
  7. 7.
    Smith, T. W 1972. Ouabain-specific antibodies: Immunochemical properties and reversal of NA+, K+-activated adenosine triphosphatase inhibition. J. Clin. Invest. 51: 1583–1593.CrossRefGoogle Scholar
  8. 8.
    Nisonoff, A., Pressman, D 1958. Heterogeneity and average combining constants of antibodies from individual rabbits. J. Immunol. 80: 417–428.Google Scholar
  9. 9.
    Novotny, J., Mudgett-Hunter, M., Haber, E., Margolies, M. N 1981. Primary structure of a mouse antidigoxin hybridoma antibody. Fed. Proc. 40: 1098.Google Scholar
  10. 10.
    Schwartz, A., G. E. Lindenmayer, J. C. Allen. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27: 3–134.Google Scholar
  11. 11.
    Smith, T. W., E. Haber, L. Yeatman, V. P. Butler, Jr. 1976. Reversal of advanced digoxin intoxication with Fab fragments of digoxinspecific antibodies. New Eng. J. Med. 294: 797–800.Google Scholar
  12. 12.
    Burchiel, S. W., B. A. Khaw, B. G. Rhodes, T. W. Smith, E. Haber. 1981. Immunopharmacokinetics and radiolabeled antibodies and their fragments. In Tumor Imaging: Radioimmunochemical Detection of Cancer. Edited by S. W. Burchiel, B. A. Rhodes, and B. Friedman. Masson, New York.Google Scholar
  13. 13.
    Margolies, M. N., M. Mudgett-Hunter, J. Novotny, E. Haber 1981. Monoclonal antibodies directed against the cardiac glycoside digoxin. In Monoclonal Antibodies and T Cell Hybridomas. ( G. Hammerling, U. Hammerling, and J.F. Kearney, Eds.) Elsevier, New York.Google Scholar
  14. 14.
    Jost, A 1946. Sur la différenciation sexuelle de l’embryon de lapin experiences de paraboise. CR Soc. Biol. 140: 463–464.Google Scholar
  15. 15.
    Jost, A 1946. Sur la différenciation sexuelle de l’embryon de lapin remarques au sujet de certaines operations chirurgical. CR Soc. Biol. 140: 460–462.Google Scholar
  16. 16.
    Jost, A 1947. Sur les derives mulleriens d’embryons de lapin des deus sexes castres a 21 jours. CR Soc. Biol. 141: 135–136.Google Scholar
  17. 17.
    Donahoe, P. K., D. A. Swann, A. Hayashi, M. D. Sullivan. 1979. Mullerian duct regression in the embryo correlated with cytotoxic activity against a human ovarian cancer. Science 205: 913–915.CrossRefGoogle Scholar
  18. 18.
    Donahoe, P. K., A. F. Fuller, Jr., R. E. Scully, S. R. Guy, G. P. Budzik. 1981. Mullerian inhibiting substance inhibits growth of a human ovarian cancer in nude mice. Ann. Surg. 194: 472–480.Google Scholar
  19. 19.
    Fuller, A. F. Jr., S. R. Guy, G. P. Budzik, P. K. Donahoe. 1982. Mullerian inhibiting substance inhibits colony growth of a human ovarian cancer cell line. J. Clin. Endo. Metab. 54: 1051–1055.Google Scholar
  20. 20.
    Donahoe, P. K., G. P. Budzik, R. L. Trelstad, M. Mudgett-Hunter, A.F. Fuller, Jr., J. M. Hutson, H. Ikawa, A. Hayashi, D.T. MacLaughlin. 1982. Mullerian inhibiting substance: An update. In Recent Progress in Hormone Research, Vo. 38. ( R.O. Greep, Ed.), New York: Academic Press, pp 279–330.Google Scholar
  21. 21.
    Mudgett-Hunter, M., G. P. Budzik, M. Sullivan, P. K. Donahoe. 1982. Monoclonal antibody to mullerian inhibiting substance. J. Immunol. 128: 1327–1333.Google Scholar
  22. 22.
    Donahoe, P. K., Y. Ito, S. Marfatia, W. H. Hendren 1977. A graded organ culture assay for the detection of Mullerian inhibiting substance. J. Surg. Res. 23: 141–148.Google Scholar
  23. 23.
    Finger, J. M., Choo, K. H. 1981. Double-label reductive methylation of tissue proteins for precision two-dimensional polyacrylamide-gel electrophoretic analysis. Biochem. J. 193: 371–374.Google Scholar
  24. 24.
    Blanchard, M., Josso, N. 1974. Sources of the anti- Mullerian hormone synthesized by the fetal testis: Mullerian inhibiting activity of fetal bovine Sertoli cells in tissue culture. Ped. Res. 8: 968–971.CrossRefGoogle Scholar
  25. 25.
    Price, J. M 1979. The secretion of Mullerian inhibiting substance by culture isolated Sertoli cells of the neonatal calf. Am. J. Anat. 156: 147–157.Google Scholar
  26. 26.
    Pierce, J.G., Parsons, T. F. 1981. Glycoprotein hormones: Structure and function. Ann. Rev. Biochem. 50: 465–495.CrossRefGoogle Scholar
  27. 27.
    Ridgeway, E. C., L. J. Ardisson, M. J. Meskell, Mudgett-Hunter, M 1982. Monoclonal antibody to human thyrotropin. J. Clin. Endo. Metab. 55: 44–48.Google Scholar
  28. 28.
    Khaw, B. A., G. A. Beller, E. Haber, Smith, T. W 1976. Localization of cardiac myosin-specific antibody in myocardial infarction. J. Clin. Invest. 58: 439–446.CrossRefGoogle Scholar
  29. 29.
    Khaw, B. A., G. A. Beller, Haber, E. 1978. Experimental myco-cardial infarct imaging following intravenous administration of Iodine-131 labeled antibody (Fabf)2 fragments specific for cardiac myosin. Circulation. 57: 743–750.Google Scholar
  30. 30.
    Khaw, B.A., J.T. Fallon, H.W. Strauss, E. Haber 1980. Myocardial infarct imaging with Indium-111-diethylene triamine pentaacetic acid-anticanine cardiac myosin antibodies. Science. 209: 295–297.CrossRefGoogle Scholar
  31. 31.
    Khaw, B. A., J. T. Fallon, H. Katus, D. Elmaleh, H. W. Strauss, E. Locke, G. M. Pohost, E. Haber 1979. Positron imaging of experimental myocardial infarction with 68Ga-DTPA-antimyosin antibody. Circulation. 59 and 60 (Suppl II): 139.Google Scholar
  32. 32.
    Khaw, B. A., H. W. Strauss, A. Carvalho, E. Locke, H. K. Gold, E. Haber. Labeling anti-cardiac myosin Fab and human fibrinogen with Technetium-99m. J. Nucl. Med. (submitted for publication).Google Scholar
  33. 33.
    Wands, J. R., Zurawski, V. R 1981. High affinity monoclonal antibodies to hepatitis B surface antigen produced by somatic cell hybrids. Gastroent. 80: 225–232.Google Scholar
  34. 34.
    Porter, R. R 1959. The hydrolysis of rabbit gamma-globulin and antibodies with crystalline papain. Biochem. J. 73: 119–126.Google Scholar
  35. 35.
    Ey, P.L., S. J. Prowse, C. R. Jenkin. 1978. Isolation of pure IGGL, IGG2A and IGG2B immunoglobulins from mouse serum using protein A Sepharose. Immunochem. 15: 429–436.CrossRefGoogle Scholar
  36. 36.
    Krejcarek, G. E., Tucker, K.L 1977. Covalent attachment of chelating groups to macromolecules. Biochem. Biophys. Res. Comm. 77: 582–585.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. Mudgett-Hunter
    • 1
  • G. P. Budzik
    • 2
  • P. K. Donahoe
    • 2
  • B. A. Khaw
    • 1
  • M. N. Margolies
    • 4
  • E. C. Ridgeway
    • 3
  • E. Haber
    • 1
  1. 1.Cardiac UnitHarvard Medical SchoolBostonUSA
  2. 2.Pediatric Surgical UnitHarvard Medical SchoolBostonUSA
  3. 3.Thyroid UnitMassachusetts General HospitalBostonUSA
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations