Advertisement

Correlation Between Spontaneous Phenotypic Changes in Pseudomonas Strains with Changes in the Structure of Catabolic Plasmids: Experiences with TOL Plasmids

  • Peter A. Williams
  • Patricia A. Cane
  • David J. Jeenes
  • Roger W. Pickup
Part of the Basic Life Sciences book series

Abstract

It is part of the traditional lore of microbiology departments, handed down by word of mouth but largely unrecorded in the literature, that bacteria, isolated from the environment for their ability to perform particularly interesting metabolic functions, often show an infuriating instability. The usual version of the story is that a strain, originally obtained by selective enrichment on some esoteric compound as sole carbon source, could no longer grow on that compound after sitting on a slope for several months. In other versions, instability was a regular occurrence and part of a routine laboratory practice would be to reisolate the original strain from a selective medium. Occasionally a promising sequence of publications on a particularly interesting strain became abruptly terminated due to the failure to resuscitate it from its premature functional demise.

Keywords

Catabolic Pathway Catabolic Gene Salicylate Hydroxylase Catabolic Plasmid Meta Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audus, L. J. 1960. In Herbicides and the Soil (Woodford, E.K. and Sagar, G.R. eds.), Blackwell Scientific Publications, Oxford, pp. 1–19.Google Scholar
  2. 2.
    Barnsley, E. A. 1976., Role and regulation of the ortho and meta pathways of catechol metabolism in Pseudomonads metabolising naphthalene and salicylate. J. Bacteriol. 125: 404–408.Google Scholar
  3. 3.
    Bayley, S. A., C. J. Duggleby, M. J. Worsey, P. A. Williams, K. G. Hardy, P. Broda. 1977. Two modes of loss of the Tol function from Pseudomonas putida mt-2. Molec. Gen. Genet. 154: 203–204.CrossRefGoogle Scholar
  4. 4.
    Bayly, R. C., G. J. Wigmore, 1973. Metabolism of phenol and cresols by mutants of Pseudomonas putida J. Bacteriol. 113: 1112–1120.Google Scholar
  5. 5.
    Benson, S., J. Shapiro. 1978. TOL is a broad-host range plasmid. J. Bacteriol. 135: 278–280.Google Scholar
  6. 6.
    Boronin, A. M., V. V. Kochetkov, G. K. Skryabin. 1980. Incompatibility groups of naphthalene degradative plasmids in Pseudomonas. FEMS Micribiol. lett. 7: 249–252.CrossRefGoogle Scholar
  7. 7.
    Boronin, A. M., V. V. Kochetov, I. I. Starovoitov, G. K. Skryabin. 1977. Plasmids pBS2 and pBS3, controlling the oxidation of naphthalene in bacteria of the genus Pseudomonas. Doklady Nauk. S.S.S.R. 237: 1205–1208.Google Scholar
  8. 8.
    Bradley, D. A., P. A. Williams. 1982. TOL determines flexible pili and is naturally depressed for transfer. J. Gen. Microbiol, (submitted for publication).Google Scholar
  9. 9.
    Cane, P. A., P. A. Williams. 1982. The plasmid coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: phenotypic changes correlated with structural modification of the plasmid pWW60-l. J. Gen. Microbiol, (in press).Google Scholar
  10. 10.
    Chakrabarty, A. M. 1972. Genetic basis of the biodégradation of salicylate in Pseudomonas. J. Bacteriol. 112: 815–828.Google Scholar
  11. 11.
    Chakrabarty, A. M., G. Chou, I. C. Gunsalus. 1973. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Natl. Acad. Sci. U.S.A. 70: 1137–1140.Google Scholar
  12. 12.
    Chakrabarty, A. M., D. A. Friello, L. H. Bopp. 1978. Transposition of plasmid DNA segments specifying hydrocarbon degradation and their expression in various microorganisns. Proc. Natl. Acad. Sci. U.S.A. 75: 3109–3112.Google Scholar
  13. 13.
    Cohen, S. N. 1976. Transposable genetic elements and plasmid evolution. Nature (London) 263: 731–738.CrossRefGoogle Scholar
  14. 14.
    Connors, M. A., E. A. Barnsley. 1982. Naphthalene plasmids in Pseudomonads. J. Bacterid. 149: 1096–1101.Google Scholar
  15. 15.
    Davies, J. I., W. C. Evans. 1964. Oxidative metabolism of naphthalene by soil Pseudomonads. Biochem. J. 91: 251–261.Google Scholar
  16. 16.
    Doolittle, W. F., C. Sapienza. 1980. Selfish genes, the phenotype paradigm and gene evolution. Nature (London) 284: 601–603.CrossRefGoogle Scholar
  17. 17.
    Dorn, E., M. Hellwig, W. Reineke, H-J. Knackmuss. 1974. Isolation and characterization of a 3-chlorobenzoate-grown pseudomonad. Arch. Microbiol. 99: 61–70.Google Scholar
  18. 18.
    Downing, R. G., P. Broda. 1979. A cleavage map of the TOL plasmid of Pseudomonas putida mt-2. Molec. Gen. Genet. 168: 189–191.Google Scholar
  19. 19.
    Downing, R. G., C. J. Duggleby, R. Villems, P. Broda. 1979. An endonuclease cleavage map of the plasmid pWW0-8, a derivative of the TOL plasmid of Pseudomonas putida mt-2. Molec. Gen Genet. 168: 97–99.Google Scholar
  20. 20.
    Duggleby, C. J., S. A. Bayley, M. J. Worsey, P. A. Williams, P. Broda. 1977. Molecular sizes and relationships of TOL plasmids in Pseudomonas. J. Bacteriol. 130: 1274–1280.Google Scholar
  21. 21.
    Dunn, N. W., H. M. Dunn, R. A. Austen. 1980. Evidence for the existence of two catabolic plasmids coding for the degradation of naphthalene. J. Gen. Microbiol. 117: 529–533.Google Scholar
  22. 22.
    Dunn, N. W., I. C. Gunsalus. 1973. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114: 974–979.Google Scholar
  23. 23.
    Falkow, S. 1972. Infectious multiple drug resistance, Pion Limited, London. 300 p.Google Scholar
  24. 24.
    Fisher, P. A., J. Appleton, J. M. Pemberton. 1978. Isolation and characterisation of the pesticide degrading plasmid pJPl from Alcaligenes paradoxus. J. Bacteriol. 135: 798–804.Google Scholar
  25. 25.
    Franklin, F. C. H., M. Bagdasarian, K. N. Timmis. 1981. Manipulation of degradative genes of soil bacteria. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds ( Th. Leisinger, A.M. Cook, R. Hutter and J. Nuesch, eds.), Academic Press, London, pp. 109–130.Google Scholar
  26. 26.
    Franklin, F. C. H., M. Bagdasarian, M. M. Bagdasarian, K. N. Timmis. 1981. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta pathway Proc. Natl. Acad. Sci. U.S.A. 78: 7458–7462.Google Scholar
  27. 27.
    Gaunt, J. K., W. C. Evans. 1971. Metabolism of 4-chloro-2- methylphenoxyacetate by a soil pseudomonad. Biochem. J. 122: 519–526.Google Scholar
  28. 28.
    Hartmann, J., W. Reineke, H-J. Knackmuss. 1979. Metabolism of 3-chloro, 4-chloro-, and 3,5-dichloro-benzoate by a pseudo- monad. App. Environ. Microbiol. 37: 421–428.Google Scholar
  29. 29.
    Inouye, S., A. Nakazawa, and T. Nakazawa. 1981. Molecular cloning of TOL genes xylB and xylE in Escherichia coli. J. Bacteriol. 145: 1137–1143.Google Scholar
  30. 30.
    Inouye, S., A. Nakazawa, and T. Nakazawa. 1981. Molecular cloning of gene xylS of the TOL plasmid: evidence for the positive regulat ion of the xy1DEGF operon by xylS. J. Bacteriol. 148: 413–418.Google Scholar
  31. 31.
    Jacoby, G. A., J. E. Rogers, A. E. Jacob, R. W. Hedges. 1978. Transposition of Pseudomonas toluene-degrading genes and expression in Escherichia coli. Nature (London) 274: 179–180.CrossRefGoogle Scholar
  32. 32.
    Jeenes, D. J., W. Reineke, H-J. Reineke, P. A. Williams. 1982. The TOL plasmid pWWO in constructed halobenzoate degrading Pseudomonas strains: enzyme regulation and DNA structure. J. Bacteriol. 150: 180–187.Google Scholar
  33. 33.
    Jeenes, D. J. Williams, P. A. 1982. Excision and integration of the degradative pathway genes from the TOL plasmid pWWO. J. Bacteriol. 150: 188–194.Google Scholar
  34. 34.
    Kunz, D. A. P. J. Chapman. 1981a. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J. Bacteriol. 146: 179–191.Google Scholar
  35. 35.
    Kunz, D. A., P. J. Chapman. 1981b. Isolation and characterisation of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1. J. Bacteriol. 146: 952–964.Google Scholar
  36. 36.
    Meulien, P., R. G. Downing, P. Broda. 1981. Excision of the 40 kb segment of the TOL plasmid from Pseudomonas putida mt-2 involves direct repeats. Molec. Gen. Genet. 184: 97–101.Google Scholar
  37. 37.
    Nakazawa, T., E. Hayashi, T. Yokota, Y. Ebina, A. Nakazawa. 1978. Isolation of TOL and RP4 recombinant by integrative suppression. J. Bacteriol. 134: 270–277.Google Scholar
  38. 38.
    Nakazawa, T., S. Inouye, A. Nakazawa. 1980. Physical and functional mapping of RP4-T0L plasmid recombinants: analysis of insertion and deletion mutants. J. Bacteriol. 144: 222–231.Google Scholar
  39. 39.
    Nakazawa, T., T. Yokota. 1973. Conjugal transfer of benzoate pathway genes in Pseudomonas arvilla mt-2. Jap. J. Bacteriol. 28: 46.Google Scholar
  40. 40.
    Orgel, L. E., F. H. C. Crick. 1980. Selfish DNA: the ultimate parasite. Nature (London) 284: 604–607.CrossRefGoogle Scholar
  41. 41.
    Ornston, L.N. 1971. Regulation of catabolic pathways in Pseudomonas. Bacteriol. Rev. 35:87-–116.Google Scholar
  42. 42.
    Ornston, L. N., R. Y. Stanier, 1966. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida I. Biochemistry. J. Biol. Chem. 241: 3776–3786.Google Scholar
  43. 43.
    Pickup, R. W., P. A. Williams. 1982. Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants of Pseudomonas putida MT20. J. Gen. Microbiol, (in press).Google Scholar
  44. 44.
    Reineke, W., H-J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substitituent effects on 1,2-dioxygenation. Biochim. Biophys. Acta. 542: 412–423.Google Scholar
  45. 45.
    Reineke, W., H-J. Knackmuss. 1979. Construction of halo-aromatics degrading bacteria. Nature (London) 277: 385–386.CrossRefGoogle Scholar
  46. 46.
    Reineke, W., D. J. Jeenes, P. A. Williams, H-J. Knackmuss. 1982. The TOL plasmid pWWO in constructed halobenzoate degrading Pseudomonas strains: prevention of meta pathway. J. Bacteriol. 150: 195–201.Google Scholar
  47. 47.
    Rheinwald, J. G., A. M. Chakrabarty, I. C. Gunsalus. 1973. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc. Natl. Acad. Sci. U.S.A. 70: 885–889.Google Scholar
  48. 48.
    Silverman, M., J. Zieg, G. Mandel, M. Simon. 1981. Analysis of the functional components of the phase variation system. Cold Spring Harbor Symp. Quant. Biol. Vol. XV, Part 1. pp. 17–26.Google Scholar
  49. 49.
    Starlinger, P. 1980. IS elements and transposons. Plasmid. 3: 241–259.CrossRefGoogle Scholar
  50. 50.
    Wheatcroft, R. G., P. A. Williams. 1981. Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J. Gen. Microbiol. 124: 433–437.Google Scholar
  51. 51.
    Williams, P. A., F. A. Catterall, K. Murray. 1975. Metabolism of naphthalene, 2-methylnaphthalene, salicylate and benzoate by Pseudomonas P: regulation of tangential pathways. J. Gr Bacteriol. 124: 679–685.Google Scholar
  52. 52.
    Williams, P. A., K. Murray. 1974. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J. Bacteriol. 120: 416–423.Google Scholar
  53. 53.
    Williams, P. A. M. J. Worsey., 1976a. Plasmids and catabolism. Biochem. Soc. Trans. 4: 466–468.Google Scholar
  54. 54.
    Williams, P. A., M. J. Worsey. 1976b. Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J. Bacterid. 125: 818–828.Google Scholar
  55. 55.
    Wong, C. L., N. W. Dunn. 1974. Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genet. Res. 23: 227–232.Google Scholar
  56. 56.
    Worsey, M. J., F. C. H. Franklin, P. A. Williams. 1978. Regulation of the degradative pathway enzymes coded for by the TOL plasmid(pWWO) from Pseudomonas putida mt-2. J. Bacteriol. 134: 757–764.Google Scholar
  57. 57.
    Worsey, M. J., P. A. Williams. 1975. Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124: 7–13.Google Scholar
  58. 58.
    Worsey, M. J., P. A. Williams. 1977. Caracterisation of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: possible regulatory implications. J. Bacteriol. 130: 1149–1158.Google Scholar
  59. 59.
    Yano, K., T. Nishi. 1980. pKJl, a naturally occurring conju- gative plasmid coding for toluene degradation and resistance to streptomycin and sulphonamides. J. Bacteriol. 143: 552–560.Google Scholar
  60. 60.
    Yen, K-M., I. C. Gunsalus. 1982. Plasmid gene organisation: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 79: 874–878.Google Scholar
  61. 61.
    Zuniga, M. C., D. R. Durham, R. A. Welch. 1981. Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate Pseudomonas putida PMD-1. J. Bacteriol. 147: 836–843.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Peter A. Williams
    • 1
  • Patricia A. Cane
    • 1
  • David J. Jeenes
    • 1
  • Roger W. Pickup
    • 1
  1. 1.Department of Biochemistry and Soil ScienceUniversity College of North WalesBangor, Gwynedd, WalesUK

Personalised recommendations