Advertisement

Industrial Production of Optically Active Compounds Using Immobilized Biocatalysts

  • Ichiro Chibata
Part of the Basic Life Sciences book series

Abstract

Since the late 1970s, biotechnology has been noticed with respect to problems of natural resources and energy; it is a comprehensive term combining the techniques of fermentation technology, enzyme engineering, genetic engineering, and so on. In this field, enzyme engineering technology, such as bioreactors using the actions of immobilized enzymes and microbial cells, is one of the main focal topics.

Keywords

Immobilize Enzyme Immobilize Cell Fumaric Acid Alanine Racemase Fumarase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tosa, T., T. Mori, N. Fuse, I. Chibata. 1966. Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31: 214–224.Google Scholar
  2. 2.
    Tosa, T., T. Mori, I. Chibata. 1969. Studies on continuous enzyme reactions. Part VI. Enzymatic properties of the DEAE-Sephadex-aminoacylase complex. Agr. Biol. Chem. 33: 1053–1059.Google Scholar
  3. 3.
    Sato, T., T. Mori, T. Tosa, I. Chibata. 1971. Studies on immobilized enzymes. IX. Preparation and properties of aminoacylase covalently attached to halogenoacetylcelluloses. Arch. Biocehm. Biophys. 147: 788–796.Google Scholar
  4. 4.
    Mori, T., T. Sato, T. Tosa, and I. Chibata. 1972. Studies on immobilized enzymes. X. Preparation and properties of aminoacylase entrapped into acrylamide gel-lattice. Enzymologia 43: 213–226.Google Scholar
  5. 5.
    Chibata, I., T. Tosa, T. Sato, T. Mori, Y. Matsuo. 1972. Preparation and industrial application of immobilized aminoacylases. Proc. IV. IFS: Ferment. Technol. Today: 383–389.Google Scholar
  6. 6.
    Tosa, T., T. Mori, I. Chibata. 1971. Studies on continuous enzyme reactions. VIII. Kinetics and pressure drop of aminoacylase column. J. Ferment. Technol. 49: 522–528.Google Scholar
  7. 7.
    Tosa, T., T. Sato, T. Mori, Y. Matsuo, I. Chibata. 1973. Continuous production of L-aspartic acid by immobilized aspartase. Biotech. Bioeng. 15: 69–84.Google Scholar
  8. 8.
    Chibata, I., T. Tosa, T. Sato. 1974. Immobilized aspartase-containing microbial cells: Preparation and enzymatic properties. Appl. Microbiol. 27: 878–885.Google Scholar
  9. 9.
    Tosa, T., T. Sato, T. Mori, I. Chibata. 1974. Basic studies for continuous production of L-aspartic acid by immobilized E. coli cells. Appl. Microbiol. 27: 886–889.Google Scholar
  10. 10.
    Sato, T., T. Mori, T. Tosa, I. Chibata, M. Furui, K. Yamashita, A. Sumi. 1975. Engineering analysis of continuous production of L-aspartic acid by immobilized E. coli cells in fixed beds. Biotech. Bioeng. 17: 1797–1804.Google Scholar
  11. 11.
    Takata, I., T. Tosa, I. Chibata. 1977. Screening of matrix suitable for immobilization of microbial cells. J. Solid-Phase Biochem. 2: 225–236.CrossRefGoogle Scholar
  12. 12.
    Tosa, T., T. Sato, T. Mori, K. Yamamoto, I. Takata, Y. Nishida, I. Chibata. 1979. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotech. Bioeng. 21: 1697–1709.Google Scholar
  13. 13.
    Nishida, Y., T. Sato, T. Tosa, I. Chibata. 1979. Immobilization of E. coli cells having aspartase activity with carrageenan and locust bean gum. Enzyme Microb. Technol. 1: 95–99.Google Scholar
  14. 14.
    Yamamoto, K., T. Tosa, K. Yamashita, I. Chibata. 1976. Continuous production of L-malic acid by immobilized Brevibacterium ammoniagenes cells. European J. Appi. Microbiol. 3: 169–183.Google Scholar
  15. 15.
    Yamamoto, K., T. Tosa, K. Yamashita, I. Chibata. 1977. Kinetics and decay of fumarase activity of immobilized Brevibacterium ammoniagenes cells for continuous production of L-malic acid. Biotech. Bioeng. 19: 1101–1114.Google Scholar
  16. 16.
    Takata, I., K. Yamamoto, T. Tosa, I. Chibata. 1979. Screening of microorganisms having high fumarase activity and their immobilization with carrageenan. European J. Appi. Microbiol. Biotech. 7: 161–172.Google Scholar
  17. 17.
    Takata, I., K. Yamamoto, T. Tosa, I. Chibata. 1980. Immobilization of Brevibacterium flavum with carrageenan and its application for continuous production of L-malic acid. Enzyme Microb. Technol. 2: 30–36.Google Scholar
  18. 18.
    Tosa, T., I. Takata, I. Chibata. 1982. Stabilization of fumarase activity of Brevibacterium flavum cells by immobilization with carrageenan and polyethyleneimine. Enzyme Eng. 7 (in press).Google Scholar
  19. 19.
    Yamamoto, K., T. Tosa, I. Chibata. 1980. Continuous production of L-alanine using Pseudomonas dacunhae immobilized with carrageenan. Biotech. Bioeng. 22: 2045–2054.Google Scholar
  20. 20.
    Takamatsu, S., K. Yamamoto, T. Tosa, I. Chibata. 1981. Stabilization of L-aspartate β-decarboxylase activity of Pseudomonas dacunhae immobilized with carrageenan. J. Ferment. Technol. 59: 489–493.Google Scholar
  21. 21.
    Sato, T., S. Takamatsu, K. Yamamoto, I. Umemura, T. Tosa, I. Chibata. 1982. Production of L-alanine from ammonium fumarate using two types of immobilized microbial cells. Enzyme Eng. 7 (in press).Google Scholar
  22. 22.
    Wada, M., J. Kato, I. Chibata. 1979. A new immobilization of microbial cells. European J. Appl. Microbiol. Biotechnol. 8: 241–247.Google Scholar
  23. 23.
    Wada, M. J. Kato, I. Chibata. 1980. Continuous production of ethanol using immobilized growing yeast cells. European J. Appl. Microbiol. Biotechnol. 10: 275–287.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Ichiro Chibata
    • 1
  1. 1.Research Laboratory of Applied BiochemistryTanabe Seiyaku Co., Ltd.Yodogawa-ku OsakaJapan

Personalised recommendations