The Obligate Methane-Oxidizing Bacteria and Their Biotechnological Potential

  • Roger Whittenbury
  • Howard Dalton
Part of the Basic Life Sciences book series


The properties and present taxonomic status of the obligate methane oxidizing bacteria are described. Methane-monooxygenase, the enzyme involved in the first step of the oxidation of methane to carbon dioxide, is discussed in detail with particular reference to its ability to insert oxygen into a wide range of compounds, such as ammonia, carbon monoxide, methanol, ethanol, alkanes, alkenes, di-methyl and diethyl-ether, alicyclic, aromatic and heterocyclic compounds. This widespread hydroxylase activity is a characteristic of all methane monoxygenases studied, though some are less catholic than others. The biotechnological potential of this enzyme is discussed and other potential biotechnological applications of methane oxidizers are mentioned.


Methane Oxidizer Single Cell Protein Potential Biotechnological Application United Kingdom Introduction Methylococcus Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colby, J., H. Dalton, 1978. Resolution of methane mono-oxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of Component C, a flavoprotein. Biochem. J. 171: 461–468.Google Scholar
  2. 2.
    Colby, J., H. Dalton. 1979. Characterization of the second prosthetic group of the flavoenzyme NADH acceptor reductase (Component C) of the methane mono-oxygenase from Methylococcus capsulatus ( Bath ). Biochem. J. 177: 903–908.Google Scholar
  3. 3.
    Colby, J., H. Dalton, R. Whittenbury. 1976. An improved assay for bacterial methane mono-oxygenase: Some properties of the enzyme from Methylomonas methanica. Biochem. J. 151: 459–462.Google Scholar
  4. 4.
    Colby, J., H. Dalton, R. Whittenbury. 1979. Biological and biochemical aspects of microbial growth on C1 compounds. Ann. Rev. Microbiol. 33: 482–517.Google Scholar
  5. 5.
    Davies, S. L., R. Whittenbury. 1970. Fine structures of methane and other hydrocarbon oxidizing bacteria. J. Gen. Microbiol. 61: 227–232.Google Scholar
  6. 6.
    Davis, J. B., V. F. Coty, J. P. Stanley. 1964. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88: 468–472.Google Scholar
  7. 7.
    Dworkin, M., J. W. Foster. 1956. Studies on Pseudomonas methanica (Sohngen) nov. comb. J. Bacteriol. 72: 646–659.Google Scholar
  8. 8.
    Ferenci, T., T. Strom, J. R. Quayle. 1975. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J. Gen. Microbiol. 91: 29–94.Google Scholar
  9. 9.
    Foster, J. W., R. H. Davis. 1966. A methane-dependant coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J. Bacteriol. 91: 1924–1931.Google Scholar
  10. 10.
    Green, P. N., I. J. Bousfield. 1982. A taxonomic study of some Gram-negative faultatively methylotrophic bacteria. J. Gen. Microbiol. 128: 623–638.Google Scholar
  11. 11.
    Hazeu, W., W. M. Batenburg-van der Egte, J. C. de Bruyn. 1980. Some characteristics of Methylococcus mobills sp. nov. Arch. Microbiol. 124: 211–220.Google Scholar
  12. 12.
    Higgins, I. J., D. J. Best, R. C. Hammond. 19812. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature (London) 286: 561–564.Google Scholar
  13. 13.
    Higgins, I. J., D. J. Best, R. C. Hammond, D. Scott. 1981. Methane-oxidizing bacteria. Micorobiol. Rev. 45: 556–590.Google Scholar
  14. 14.
    Hou, C. T., R. N. Patel, A. I. Laskin, N. Barnabe. 1980. Microbial oxidation of lower n-alkanes by resting suspensions of various methylotrophic bacteria, and the effect of methane metabolites. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Letts. 9: 267–270.Google Scholar
  15. 15.
    Leadbetter, E. R., J. W. Foster. 1958. Studies on some methane-utilizing bacteria. Arch. Microbiol. 30: 91–118.Google Scholar
  16. 16.
    Lynch, M. J., A. E. Wopat, M.L. O’Connor. 1980. Characterization of two new facultative methylotrophs. Appl. Environ. Microbiol. 40: 400–407.Google Scholar
  17. 17.
    Panganiban, A. T., T. E. Patt, W. Hart, R. S. Hanson. 1979. Oxidation of methane in the absence of oxygen in lake water samples. Appl. Environ. Microbiol. 37: 303–309.Google Scholar
  18. 18.
    Patt, T. E., G. C. Cole, J. Bland, R. S. Hanson. 1974. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J. Bacteriol. 120: 955–964.Google Scholar
  19. 19.
    Ribbons, D. W. 1975. Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus. Distribution and properties of methane-dependent reduces nicotinamide adenine dinucleotide oxidase (methane hydroxylase). J. Bacteriol. 123: 1351–13463.Google Scholar
  20. 20.
    Ribbons, D. W., J. M. Michaeover. 1970. Methane oxidation by cell free extracts of Methylococcus capsulatus. FEBS Lett. 11: 41–44.CrossRefGoogle Scholar
  21. 21.
    Romanowskaya, V. A., Y. R. Malushenko, V. N. Bogachenko. 1978. Corrected diagnoses of genera and species of methane assimilating bacteria. Microbiologiya 47: 120–130.Google Scholar
  22. 22.
    Shishkina, V. N., Y. A. Trotsenko. 1982. Multiple enzymic lesions in obligate methanotrophic bacteria. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 13: 237–242.Google Scholar
  23. 23.
    Söhngen, N. L. 1906. Uber Bakterien weihe Methan als Kohlenstoff nahrung und Energiequelle Gebrauchen. Zentrabi. Bacteriol. Parasitenk. Infektionskr. Hyg. Abt. II 125: 513–517.Google Scholar
  24. 24.
    Stirling, D. I., H. Dalton. 1979. The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath). FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 5: 315–318.Google Scholar
  25. 25.
    Stirling, D. I., H. Dalton. 1979. Properties of the methane mono-oxygenase from extracts of Methylosinus trichosporium 0B3b and evidence of its similarity to the enzyme from Methylococcus capsulatus (Bath). Eur. J. Biochem. 96: 205–221.Google Scholar
  26. 26.
    Taylor, S. C., H. Dalton, C. S. Dow. 1981. Ribulose 1, 5- bisphosphate carboxylase/oxygenase and carbon assimilation in Methylococcus capsulatus (Bath). J. Gen. Microbiol. 122: 89–94.Google Scholar
  27. 27.
    Tonge, G. M., D. E. F. Harrison, I. J. Higgins. 1977. Purification and properties of the methane mono-oxygenase system from Methylosinus trichosporium 0B3B. Biochem. J. 161: 333–344.Google Scholar
  28. 28.
    Tonge, G. M., D. E. F. Harrison, C. J. Knowles, I. J. Higgins, 1975. Properties and partial purification of the methane- oxidizing enzyme from Methylosinus trichosporium. FEBS Lett. 58: 293–299.CrossRefGoogle Scholar
  29. 29.
    Trotsenko, Y. A. 1976. Isolation and characterization of obligate methanotrophic bacteria, p. 329–336. In H.G. Schlegel, G. Gottschalk, and N. Pfennig (eds.), Symposium on microbial production and utilization of gases (H2, CH4, CO), Göttingen. Akademie der. Wissenschaften, Gottingen.Google Scholar
  30. 30.
    Whittenbury, R. 1980. The interrelationship of autotrophy and methylotroph as seen in Methylococcus capsulatus (Bath), p. 181–190. In H. Dalton (ed.), Microbiol growth on C2 compounds. Heyden, London.Google Scholar
  31. 31.
    Whittenbury, R., J. Colby, H. Dalton, H. C. Reed. 1976. Biology and ecology of methane oxidizers, p. 281–292. In. H-G. Schleger, G. Gottschalkf, and N. Pfennig (eds.), Symposium on microbiol production and utilization of gases (H2, CH4, CO), Göttingen. Akademic der Wissenschaften, Göttingen.Google Scholar
  32. 32.
    Whittenbury, R., S. L. Davies, J. F. Davey. 1970. Exospores and cysts formed by methane utilizing bacteria. J. Gen Microbiol. 61: 219–228.Google Scholar
  33. 33.
    Whittenbury, R., K. C. Phillips, J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61–205–218.Google Scholar
  34. 34.
    Wolf, H. J., R. S. Hanson. 1979. Isolation and characterization of methane-utilizing yeasts. J. Gen. Microbiol. 114–187–194.Google Scholar
  35. 35.
    Wolf, H. J., R. S. Hanson. 1980. Identification of methane- utilizing yeasts. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 7: 177–179.CrossRefGoogle Scholar
  36. 36.
    Zehnder, A. J. B., T. D. Brock. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bacterid. 137: 420–432.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Roger Whittenbury
    • 1
  • Howard Dalton
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations