Anaerobic Production of Chemicals

  • James C. Linden
  • Antonio Moreira
Part of the Basic Life Sciences book series


Anaerobic fermentations are among the oldest industrially practiced fermentation processes. The production of acetone and butanol, for example, by the well-known Weizmann process, dates as far back as 1916 [1]. In spite of such a long record, anaerobic processes are not, at the present time, among the most important fermentation-based industries. This has resulted from the tremendous development of the petrochemical industries starting in the 1950s and the consequent displacement of the fermentation routes by the more economically attractive petrochemical processes.


Acrylic Acid Spin Label Aliphatic Alcohol Anaerobic Fermentation Elaidic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walton, M. J., J. L. Martin. 1979. Production of Butanol- Acetone by Fermentation-. Iti Microbial Technology, H.J. Peppier, D. Perlman (Eds.), Vol. I, Academic Press, New York, pp. 187–209.Google Scholar
  2. 2.
    Moreira, A. R., B. E. Dale, M. G. Doremus. 1982. Utilization of the Fermentor Off-Gases from an Acetone-Butanol Fermentation. Paper presented at the Fourth Symposium on Biotechnology in Energy Production, Conservation, Gatlinburg, Tennessee, May 10–14.Google Scholar
  3. 3.
    Gabriel, C. L. 1928. Butanol Fermentation Process, Ind. Eng. Chem., 20, No. 10, p. 1063–1083.CrossRefGoogle Scholar
  4. 4.
    Rogers, P. L, K. J. Lee, D. E. Tribe. 1979. Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Letters, 1 No. 4: 165–170.CrossRefGoogle Scholar
  5. 5.
    Becker, D. K., P. J. Blotkamp, G. H. Emert. 1981. Pilot-Scale Conversion of Cellulose to Ethanol. In Fuels from Biomass, Wastes, D. L. Klass, G. H. Emert (Eds.), Ann Arbor Science, Ann Arbor, Michigan, pp. 375–392.Google Scholar
  6. 6.
    Vijkari, L., P. Nybergh, M. Linko. 1981. Hydrolysis of Cellulose by T. reesei Enzymes, Simultaneous Production of Ethanol by Zymomonas sp. In Advances in Biotechnology, M. Moo-Young (Ed.), Vol. II, Pergamon Press, Toronto, pp. 137–142.Google Scholar
  7. 7.
    McGree, R. H. 1950. Anaerobic thermophilic cellulolytic bacteria. Bacteriol. Review, 14: 51–63.Google Scholar
  8. 8.
    Ng, T. K., P. J. Weimer, J. G. Zeikus. 1977. Cellulolytic, physiological properties of Clostridium thermocellum. Arch. Microbiol., 114: 1–8.CrossRefGoogle Scholar
  9. 9.
    Wang, D. I. C., C. L. Cooney, S. D. Wang, J. Gordon, G. Y. Wang. 1978. Anaerobic biomass degradation to produce sugars, fuels, chemicals. Proceedings of the 2nd Annual Biomass Energy Systems Conference. ( Rensselaer Polytechnic Institute, Troy, NY ), pp. 537–570.Google Scholar
  10. 10.
    Zeikus, J. G., A. Ben-Bassat, P. W. Hegge. 1980. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol., 143: 432–440.Google Scholar
  11. 11.
    Wang, P. Y., B. F. Johnson, H. Schneider, 1980. Fermentation of D-xylose by using glucose isomerase in the medium to convert xylose to D-xylulose. Biotechnol. Letters, 3: 273–278.Google Scholar
  12. 12.
    Slininger, P. S., R. J. Bothast, J. E. Cauwenberg, C. P. Kurtzman. 1982. Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. Bioeng. 24: 371–384.CrossRefGoogle Scholar
  13. 13.
    Anon. 1982. Gene looks, but doesn’t leap, at thermophilic fermentation process. Biomass Digest, 4, No. 5: 2–3.Google Scholar
  14. 14.
    Ljungdahl, L. G., F. Bryant, L. Carreira, T. Saiki, J. Wiegle. 1981. Some Aspects of Thermophilic, Extreme Thermophilic Anaerobic Microorganisms. In Trends in the Biology of Fermentations for Fuels, Chemicals, A. Hollaender (Ed.), Plenum Press, New York, pp. 397–419.Google Scholar
  15. 15.
    Sinskey, A. J., M. Akedo, C. L. Cooney. 1981. Aerylate Fermentations. In Trends in the Biology of Fermentations for Fuels, Chemicals, A. Hollaender (Ed.), Plenum Press, New York, pp. 473–492.Google Scholar
  16. 16.
    Flickinger, M. C. 1980. Current biological research in conversion of cellulosic carbohydrates into liquid fuels: How far have we come? Biotechnol. Bioeng., 22, Suppl. 1: 27–48.Google Scholar
  17. 17.
    Heylin, M. (ed.). 1982. Facts, figures for the chemical industry. Chem., Eng. News, 60 (24):31–81.Google Scholar
  18. 18.
    Wang, D. I. C., C. L. Cooney, A. L. Demain, R. F. Gomez, A. J. Sinskey. 1979. Degradation of cellulosic biomass, its subsequent utilization for the production of chemical feedstocks. Quarterly Report to the U.S. Dept. of Energy, COG-4198–9: 141–149.Google Scholar
  19. 19.
    Ingram, L. O. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125: 670–678.Google Scholar
  20. 20.
    Buttke, T. M., L. O. Ingram. 1978. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acids synthesis in vivo. Biochem. 17: 637–644.CrossRefGoogle Scholar
  21. 21.
    Garwin, J. L., J. E. Cronan, Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J. Bacteriol. 141: 1457–1459.Google Scholar
  22. 22.
    Grisham, C.M., R.E. Barnett. 1973. The effects of long-chain+ + alcohols on membrane lipids, the (Na - K) - ATPase. Biochim. Biophys. Acta. 311: 417–422.Google Scholar
  23. 23.
    Lenaz, G., E. Bertoli, G. Curatola, L. Mazzanti, A. Bigi. 1976. Lipid protein interactions in mitochondria: spin, fluoresence probe studies on the effect of n-alkanols on phospholipid vesicles, mitochondrial membranes. Arch. Biochem. Biophys. 172: 278–288.CrossRefGoogle Scholar
  24. 24.
    Paterson, S. J., K. W. Butler, P. Huang, J. La Belle, I. C. P. Smith, H. Schneider, 1972. The effects of alcohols on lipid bilayes: A spin label study. Biochim. Biophys. Acta. 266: 597–602.CrossRefGoogle Scholar
  25. 25.
    Yoshida, M., N. Sone, H. Hirata, Y. Kagawa. 1975. A highly stable adenosine triphosphatase from a thermophilic bacterium: purification, properties, reconstitution. J. Biol. Chem. 250: 7910–7916.Google Scholar
  26. 26.
    Hirata, H., N. Sone, M. Yoshida, Y. Kakawa. 1976. Active transport of alanine of thermo-stable membrane vesicles isolated from PS3. J. Biochem. (Tokyo). 76: 1157–1166.Google Scholar
  27. 27.
    Laskin, A. I., H. Lechevalier (eds). 1971. Lipoidal contents of specific microorganisms. CRC Handbook of Microbiology. Vol. 3: 297–298.Google Scholar
  28. 28.
    Sorensen, S., T. Dunwiddie, G. McClearn, R. Freedman, B. Hoffer. 1981. Ethanol-induced depressions in cerebellar, lippocampal neurons of mice selectively bred for differences in ethanol sensitivity: an electro-physiological study. Pharmacol. Biochem. Behavior. 14: 227–234.CrossRefGoogle Scholar
  29. 29.
    Baker. R., C. Melchior, R. Deitrich. 1980. The effect of halothane on mice selectively bred for differential sensitivity to alcohol. Pharmacol. Biochem. Behavior. 12: 691–695.CrossRefGoogle Scholar
  30. 30.
    Moreira, A.R., D.C. Ulmer, J.C. Linden. 1981. Butanol toxicity in the butylic fermentation. Biotechnol. Bioeng., Symp. No. 11: 567–579.Google Scholar
  31. 31.
    Linden, J. C., D. C. Ulmer, A. R. Moreira. 1981. A mechanism for aliphatic alochol-induced toxicity in Clostridium acetobutylicum. Presented at 182nd Natl. ACS Meetings, New York City.Google Scholar
  32. 32.
    Sullivan, K. H., M. K. Jain, A. L. Koch. 1974. Activation of the β-galactoside transport system in E. coli ML-308 by n- alkanols. Biochim. Biophys. Acta. 352: 287–297.CrossRefGoogle Scholar
  33. 33.
    Duperray, B., M. Chastrette, M.C. Makabeh, H. Pacheco. 1976. Analyse de l’activité bactercide de populations d’alcools alphatiques et de β-naphtols suivanto les methodes de Hansch et Darc-Pelco: effet d’allongement de chaine. Eur. J. Med. Chem-Chimica Therapeutica. 11: 433–437.Google Scholar
  34. 34.
    Costa, J. M., A. R. Moreira. 1982. Kinetics of the acetone-butanol fermentation. Presented at the Winter Symposium on the Fundamentals of Biochemical Engineering, Boulder, CO. January 17–20.Google Scholar
  35. 35.
    Boulanger, Y., S. Schreier, I. C. P. Smith. 1981. Molecular details of anesthetic-lipid interaction as seen by deuterium, phosphorus-31 nuclear magnetic resonance. Biochem. 20: 6824–6830.CrossRefGoogle Scholar
  36. 36.
    Browning, J. L., H. Akutsu. 1982. Local anesthetics, divalent cations have the same effect on the headgroups of phosphatidylcholine, phosphatidylethanolamine. Biochim. Biophys. Acta. 684: 172–178.CrossRefGoogle Scholar
  37. 37.
    Lenaz, G., G. Parenti-Castelli, A. M. Sechi. 1975. Changes in mitochondrial adenosine triphosphatase activity induced by n-butanol. Arch. Biochem. Biophys. 167: 72–79.Google Scholar
  38. 38.
    Hesketh, T. R., G. A. Smith, M. D. Houslay, K. A. McGill, N. J. M. Birdsall, J. C. Metcalfe, G. B. Warren. 1976. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochem. 15: 4145–4151.CrossRefGoogle Scholar
  39. 39.
    Meissner, G. 1981. Effect of lipid membrane structure on adenosine triphosphate hydrolyzing activity of the calcium-stimulated adenosinetriphosphatase of sacroplasmic reticulum. Biochem. 20: 6810–6817.CrossRefGoogle Scholar
  40. 40.
    Broquist, H. P., E. E. Snell. 1951. Biotin, bacterial growth. J. Biol. Chem. 188: 432–444.Google Scholar
  41. 41.
    Goldfine, H., N. C. Johnston. 1980. Regulation of membrane fluidity in anaerobic bacteria. In Membrane Fluidity: Biophysical Techniques, Cellular Recognition. M. Kates, A. Kuksis (Eds.). The Human Press, Clifton, NJ. pp 365–380.CrossRefGoogle Scholar
  42. 42.
    Thomas, D. S., A. H. Rose. 1979. Inhibitory effect of ethanol on growth, solvent accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition. Arch. Microbiol. 122: 49–55.CrossRefGoogle Scholar
  43. 43.
    Brown, S. W., S. G. Oliver, D. E. F. Harrison, R. C. Righelato. 1981. Ethanol inhibition of yeast growth, fermentation: differences in the magnitude, complexity of the effect. Eur. Appl. Microbiol. Biotechnol. 11:151–155.CrossRefGoogle Scholar
  44. 44.
    Wang, D. I. C., C. L. Cooney, A. L. Demain, R. F. Gomez, A. J. Sinskey. 1981. Degradation of cellulosic biomass, its subsequent utilization for the production of chemical feedstocks. Report to U.S. DOE under contract no. EG-77-S-02–4198, subcontract no. XR-9-8109-1.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • James C. Linden
    • 1
  • Antonio Moreira
    • 1
  1. 1.Department of Agricultural and Chemical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations