Genetic Strategies in Strain Design for Fermentations

  • Graham C. Walker
Part of the Basic Life Sciences book series


The impact of biotechnology on the production of fuels and chemicals will depend in part upon advances in our ability to genetically manipulate microorganisms of commercial interest. Many of the goals of successful fermentations such as high product yield, high rates of product formation, absence of undesired side products, reduced production of cell mass, and lack of end-product inhibition can be achieved, at least in principle, by the use of a combination of genetic and in vitro recombinant DNA approaches. However, many of the bacteria, particularly anaerobes, that are useful for producing fuels and chemicals have not yet been the object of detailed genetic or molecular biological study.


Transposable Element Insertion Mutagenesis Clostridium Perfringens Clostridium Thermocellum Chemical Mutagenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allcock, E. R., S. J. Reid, D. T. Jones, D. R. Woods. 1981. Autolytic activity and an autolysis-defective mutant of Clostridium acetobutylicum. Appl. Environ. Microbiol. 42: 929–935.Google Scholar
  2. 2.
    Allcock, E. R., S. Reid, D. T. Jones, D. R. Woods. 1982. Clostridium acetobutylicum protoplast formation and regeneration. Appl. Environ. Microbiol. 43: 719–721.Google Scholar
  3. 3.
    Andreesen, J. R., G. Gottschalk, H. Schlegel. 1970. Clostridium formicoaceticum nov. spec. Isolation, description, and distinction from C. aceticum and C. thermoaceticum. Arch. Microbiol. 72: 154–174.CrossRefGoogle Scholar
  4. 4.
    Bagg, A., C. J. Kenyon, G. C. Walker. 1981. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 5749–5753.Google Scholar
  5. 5.
    Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, R. S. Wolfe. 1979. Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43: 260–296.Google Scholar
  6. 6.
    Blaschek, H. P., M. Solberg. 1981. Isolation of a plasmid responsible for caseinase activity in Clostridium perfringens ATCC 3626B. J. Bacteriol. 147: 262–266.Google Scholar
  7. 7.
    Brefort, G., M. Magot, H. Ionesco, M. Sebald. 1977. Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1: 52–66.CrossRefGoogle Scholar
  8. 8.
    Brent, R., M. Ptashne. 1980. The lexA gene product represses its own promoter. Proc. Natl. Acad. Sci. USA 77: 1932–1936.Google Scholar
  9. 9.
    Bridges, B. A. 1976. Mutation induction, pp. 7–14. In K.D. MacDonald (ed.), Second international symposium on the genetics of industrial microorganisms. Academic Press, Inc., New York.Google Scholar
  10. 10.
    Casadaban, M. J., S. N. Cohen. 1979. Lactose genes fused to exogeneous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control. Proc. Natl. Acad. Sci. USA. 76: 4530–4533.Google Scholar
  11. 11.
    Casadaban, M. J., J. Chou, S. N. Cohen. 1979. In vitro gene fusions that join an enzymatically active β-galactosidase segment to the amino-terminal fragments of exogenous proteins: Escherichia coli plasmids vectors for the detection of cloning of translational initiation signals. J. Bacteriol. 143: 971–980.Google Scholar
  12. 12.
    Dobson, P. P., G. G. Walker. 1980. Plasmid (pKMlOl)- mediated Weigle-reactivation in Escherichia coli K-12 and Salmonella typhimurium LT2: genetic dependence, kinetics of induction, and effect of chloramphenicol. Mutat. Res. 71: 25–41.Google Scholar
  13. 13.
    Duncan, C. L., E. A. Rokos, C. M. Christenson, J. I. Rood. 1978. Multiple plasmids in different toxigenic types of Clostridium perfringens: possible control of β-toxin production, pp 246–248. In D. Schiessinger (ed.), Microbiology 1978. American Society for Microbiology, Washington, D.C.Google Scholar
  14. 14.
    Dunn, R., J. McCoy, M. Simsek, A. Majumdar, S. H. Chang, U. L. RajBhandary, H. G. Khorana. 1981. The bacteriorhodopsin gene. Proc. Natl. Acad. Sci. USA 78: 6744–6748.CrossRefGoogle Scholar
  15. 15.
    Eklund, M. W., F. T. Poysky. 1974. Interconversion of type C and D strains of Clostridium botulinum by specific bacteriophages. Appl. Microbiol. 27: 251–258.Google Scholar
  16. 16.
    Elledge, S. J., G. C. Walker. Proteins required for UV and chemical mutagenesis: identification of the products of the umuC locus of Escherichia coli. (Submitted for publication).Google Scholar
  17. 17.
    Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, G.J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43: 701–715.Google Scholar
  18. 18.
    Fox, G. E., E. Stackebrandt, R. B. Hespell, J. Gibson, J. Maniloff, T. A. Dyer, R. S. Wolfe, W. E. Balch, R. S. Tanner, L. J. Magrum, L. B. Zablen, R. Blakemore, R. Gupta, L. Boene, B. J. Lewis, D. A. Stahl, K. R. Luehrsen, K. N. Chen, C. R. Woese. 2980. The phylogeny of prokaryotes. Science 209: 457–463.CrossRefGoogle Scholar
  19. 19.
    Gomez, R. F., B. Snedecor, B. Mendez. 1981. Development of genetic principles in Clostridium thermocellum. Developments in Industrial Microbiol. 22: 87–95.Google Scholar
  20. 20.
    Hofmeister, J., H. Kohler, V. D. Fillipov. 1979. DNA repair Proteus mirabilis: plasmid-mediated recovery and mutagenesis. Molec. Gen. Genet. 176: 265–273.Google Scholar
  21. 21.
    Hopwood, D. A. 1981. Genetic studies with bacterial protoplasts. Ann. Rev. Microbiol. 35: 237–272.Google Scholar
  22. 22.
    Hsu, E., E. J. Ordal. 1970. Comparative metabolism of vegetative and sporulating cultures of Clostridium thermo-saccharolyticum. J. Bacteriol. 102: 369–376.Google Scholar
  23. 23.
    Jarrell, K. F., J. R. Colvin, G. D. Sprott. 1982. Spontaneous protoplast formation in Methanobacterium bryantii, J. Bacteriol. 149: 346–353.Google Scholar
  24. 24.
    Johnson, E. A., A. Madia, A. L. Demain. 1981. Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophilic Clostridium thermocellum. Appl. Environ. Microbiol. 41: 1060–1062.Google Scholar
  25. 25.
    Kato, T., Y. Shinoura. 1977. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Molec. Gen. Genet. 156: 1212–131.Google Scholar
  26. 26.
    Kenyon, C. J., G. C. Walker. 1980. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc. Natl. Acad. Sci. USA 77: 2819–2823.Google Scholar
  27. 27.
    Kenyon, C. J., G. C. Walker. 1981. Expression of the uvrA gene of Escherichia coli is inducible. Nature 289: 810–812.CrossRefGoogle Scholar
  28. 28.
    Kenyon, C. J., R. Brent, P. Ptashne, G. C. Walker. The regulation of damage-inducible genes in Escherichia coli. J. Molec. Biol. (In Press).Google Scholar
  29. 29.
    Kleckner, N., J. Roth, D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. J. Molec. Biol. 116: 125–159.Google Scholar
  30. 30.
    Langer, P. J., W. G. Shanabruch, G. C. Walker. 1981. Functional organization of the plasmid pKMIOl. J. Bacteriol. 145: 1310–1316.Google Scholar
  31. 31.
    Mah, R. A., D. A. Ward, L. Baresi, T. L. Glass. 1977. Biogenesis of methane. Ann. Rev. Microbiol. 31: 309–341.Google Scholar
  32. 32.
    Meagher, R. B., R.,C. Tait, M. B. Betlock, H. B. Boyer. 1977. Protein Expression in E. coli minicells by recombinant Plasmids. Cell 10: 521–536.Google Scholar
  33. 33.
    Mendez, B.S., and R.F. Gomez. 1982. Isolation of Clostridium thermocellum auxotrophs. Appl. Environ. Microbiol. 43: 495–496.Google Scholar
  34. 34.
    McCann, J., E. Choi, E. Yamasaki, B. N. Ames. 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72: 5135–5139.CrossRefGoogle Scholar
  35. 35.
    McCann, J., B. N. Ames. 1976. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA. 73: 950–954.CrossRefGoogle Scholar
  36. 36.
    Mulligan, J. T., W. Margolin, J. H. Krueger, G. C. Walker. 1982. Mutations affecting the regulation of methionine bio- synthetic genes isolated by the use of met-lac fusions. J. Bacteriol. (In Press).Google Scholar
  37. 37.
    Ng, T. K., P. J. Weimer, J. G. Zeikus. 1977. Cellulolytic and physiological properties of Clostridium thermocellum. Arch. Microbiol. 114: 1–7.CrossRefGoogle Scholar
  38. 38.
    Perry, K. L., G.C. Walker, Identification of Plasmid (pKMIOl)-Coded Proteins Involved in Mutagenesis and UV-Resistance, (Submitted for publication).Google Scholar
  39. 39.
    Pfeifer, F., G. Weidinger, W. Goebel. 1981. Characterization of plasmids in halobacteria. J. Bacteriol. 145: 369–374.Google Scholar
  40. 40.
    Pfeifer, F.,G. Weidinger, W. Goebel. 1981. Genetic variability in Halobacterium halobium. J. Bacteriol. 145: 375–382.Google Scholar
  41. 41.
    Rood, J. I., V. N. Scott, C. L. Duncan. 2978. Identification of a transferable tetracycline resistance plasmid (pCW3) from Clostridium perfringens. Plasmid 1: 563–570.CrossRefGoogle Scholar
  42. 42.
    Ruvkun, G. B., Ausubel, F. M. 1981. A general method for site-directed mutagenesis in prokaryotes. Nature 289: 85–88.CrossRefGoogle Scholar
  43. 43.
    Sancar, A., R. P. Wharton, S. Seltzer, B. M. Kacinski, N. D. Clarke, W. D. Rupp. 1981. Identification of the uvrA Gene Product. J. Molec. Biol. 148: 45–62.Google Scholar
  44. 44.
    Sapienza, C., W. F. Doolittle. 1982. Unusual physical organization of the Halobacterium genome. Nature 295: 384–389.CrossRefGoogle Scholar
  45. 45.
    Schwartz, R. D., F. A. Keller, Jr. 1982. Isolation of a strain of Clostridium thermocellum capable of growth and acetic acid production at pH 4.5 Appl. Environ. Microbiol. 43: 117–123.Google Scholar
  46. 46.
    Silhavy, T. J., J. Beckwith. Isolation and characterization of Escherichia coli mutants affected in protein localization. In Biomembanes: membrane biogenesis, sorting, transport of membrane constitutents. Academic Press, Inc., New York, in press.Google Scholar
  47. 47.
    Spivey, M. J. 1978. The acetone/butanol/ethanol fermentation. Process Biochem. 13(11);2–25,Google Scholar
  48. 48.
    Shanabruch, W. G., Walker. G. C. 1980. Localization of the plasmid (pKMlOl) gene(s) involved in recA+lexA+-dependent mutagenesis. Molec. Gen. Genet. 179: 289–297.CrossRefGoogle Scholar
  49. 49.
    Shanabruch, W. G., I. Behlau, G. C. Walker. 1981. Spontaneous mutators of Salmonella typhimurium LT2 generated by the insertion of transposable elements. J. Bacteriol. 147: 827–835.Google Scholar
  50. 50.
    Sprott, G. D., J. R. Colvin, R. C. McKellar. 1979. Spheroplasts of Methanospirilium hungatii formed upon treatment with dithiothreitol. Can. J. Microbiol. 25: 730–738.CrossRefGoogle Scholar
  51. 51.
    Torsvik, T., I. D. Dundas. 1974. Bacteriophage of Halo-bacterium salinarium. Nature 248: 680–682.CrossRefGoogle Scholar
  52. 52.
    Wais, A. C., M. Kon, R. E. MacDonald, B. D. Stollar. 1975. Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature 256: 314–315.CrossRefGoogle Scholar
  53. 53.
    Walker, G. C. 1978. Isolation and characterization of mutants of the plasmid PKM1O1 deficient in their ability to enhance mutagenesis and repair. J. Bacteriol. 133: 1203–1211.Google Scholar
  54. 54.
    Walker, G. C., P. P. Dobson. 1979. Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKMlOl. Molec. Gen. Genet. 172: 17–24.Google Scholar
  55. 55.
    Woese, C. R., L. J. Magum, G. E. Fox. 1978. Archaebacteria. J. Molec. Evol. 11: 245–252.CrossRefGoogle Scholar
  56. 56.
    Zeikus, J. G., R. S. Wolfe. 1972. Methanobacterium thermo- moautotrophicus sp. n., anaerobic, autotrophic, extreme thermophile. J. Bacterid. 109: 707–713.Google Scholar
  57. 57.
    Zeikus, J. G. 1980. Chemical and fuel production by anaerobic bacteria. Ann. Rev. Microbiol. 34: 423–464.CrossRefGoogle Scholar
  58. 58.
    Zeikus, J. G., A. Ben-Bassat, P. Hegge. 1980. Microbiology of methanogenesis in thermal, volcanic, environments. J. Bacterid. 143: 432–440.Google Scholar
  59. 59.
    Zillig, W., K. O. Stetter, W. Schulz, D. Janekovic. 1980. In P. Moldner and B. Ries (eds.) Trends in enzymology: enzyme regulation and mechanism of action, pp 159–178. Pergamon Press.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Graham C. Walker
    • 1
  1. 1.Biology DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations