The Utilization of Inorganic Pyrophosphate, Tripolyphosphate, and Tetrapolyphosphate as Energy Sources for the Growth of Anaerobic Bacteria

  • Harry D. PeckJr.
  • Chi-Li Liu
  • A. K. Varma
  • L. G. Ljungdahl
  • M. Szulczynski
  • F. Bryant
  • L. Carreira
Part of the Basic Life Sciences book series


Inorganic pyrophosphate (PPi) has been shown to be utilized as a source of energy for the growth of a number of pure cultures of anaerobic bacteria and isolates from marine and fresh water environments. The microorganisms generally require a source of fixed carbon such as yeast extract for growth but with some of the sulfate reducing bacteria, acetate and sulfate were also required. Growth, as determined by optical density, cell numbers, or protein, is proportional to the concentration of PPi over a limited range and growth is always accompanied by the hydrolysis of PPi to orthophosphate. PPi was also demonstrated to modify fermentations without effecting growth Thus, methane formation by Methanosarcina barkeri from acetate, methanol or H2 plus CO2 is stimulated 2–3 fold in the presence of PPi and, with the latter two substrates, an accumulation of acetate is observed without a significant increase in growth. Enrichment cultures have been obtained using tripolyphosphate and tetrapolyphosphate and it is evident that these polyphosphates can also be utilized as a source of energy for the growth of anaerobic microorganisms. An enzyme has been purified from Thermoanaerobacter ethanolicus which exhibits both PPi:acetate kinase and ATP:acetate kinase activities and it is suggested that this kinase may be responsible for the widespread ability among anaerobic bacteria to utilize PPi as a source of energy.


Anaerobic Bacterium Enrichment Culture Methane Formation Organic Phosphate Clostridium Thermocellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akagi, J. M., L. L. Campbell. 1962. Studies on thermophilic sulfate-reducing bacteria III Adenosine triphosphate sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J. Bacteriol. 84: 1194–1201.Google Scholar
  2. 2.
    Akagi, J. M., L. L. Campbell. 1963. Inorganic pyrophosphatase of Desulfovibrio desulfuricans. J. Bacteriol. 86: 563–568.Google Scholar
  3. 3.
    Badziong, W., R. K. Thauer. 1978. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen and sulfate and hydrogen and thiosulfate as sole energy sources. Arch. Microbiol. 117: 209–214.Google Scholar
  4. 4.
    Baltscheffsky, H., L. von Stedingk. 1966. Bacterial photo-phosphorylation in the absence of added nucleotide. A second intermediate state of energy transfer of light-induced formation of ATP. Biochem. Biophys. Res. Commun. 22: 722–725.Google Scholar
  5. 5.
    Baltscheffsky, M. 1969. Energy conversion-linked changes of carotenoid absorbance in Rhodospirillum rubrum chromatophores. Arch. Biochem. Biophys. 130: 646–652.Google Scholar
  6. 6.
    Bramlett, R. N., H. D. Peck, Jr. 1975. Some physical and kinetic properties of adenylyl sufate reductase from Desulfovibrio vulgaris. J. Biol. Chem. 250: 2979–2986.Google Scholar
  7. 7.
    Cagen, L. M., H. C. Friedman. 1972. Enzymatic phosphorylation of serine. J. Biol. Chem. 247: 3382–3392.Google Scholar
  8. 8.
    Carnal, N. W., C.C. Black. 1979. Pyrophosphate-dependent 6-phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem. Biophys. Res. Commun. 86: 20–26.Google Scholar
  9. 9.
    Dilworth, G., J. Wiegel, L. G. Ljungdahl, H. D. Peck, Jr. 1980. Reconstitution of mesophilic microbial associations which ferment cellulose to various products. In “Colloque Cellulose Microbienne” Centre National de la Recerche Scientifique, Marseille pp. 111–126.Google Scholar
  10. 10.
    Evans, H. J., H. G. Wood. 1968. The mechanism of the pyruvate phosphate dikinase reaction. Proc. Natl. Acad. Sci. ( US ) 61: 1448–1453.Google Scholar
  11. 11.
    Hatch, M. D., C. R. Slack. 1968. A new enzyme for the inter- conversion of pyruvate and phosphopyruvate. and its role in the CH4 dicarboxylic acid pathway of photosynthesis. Biochem. J. 106: 141–146.Google Scholar
  12. 12.
    Harold, F. M. 1966. Inorganic polyphosphates in Biology: structure, metabolism and function. Bacteriol Rev. 30: 772–794.Google Scholar
  13. 13.
    Kell, D. B., M. W. Peck, G. Roger, J. G. Morris. 1981. On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. Biochem. Biophys. Res. Commun. 99: 81–88.Google Scholar
  14. 14.
    Kobayashi, K., Y. Morisawa, T. Ishitoka, M. Ishimoto. 1975. Biochemical studies on sulfate reducing bacteria. XIV. Enzyme levels of adenylyl sulfate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase and adenosine triphosphatase in cells grown on sulfate, sulfite and thiosulfate. J. Biochem. ( Tokyo ) 78: 1079–1085.Google Scholar
  15. 15.
    Kornberg, A. 1957. Pyrophosphorylases and phosphorylases in biosynthetic reactions. Adv. Enzymol. 18: 191–240.Google Scholar
  16. 16.
    Kulaev, I. S., E. B. Mansurova, E. B. Borlakova, V. F. Dukhovich. 1980. Why ATP instead of pyrophosphate? Interrelation between ATP and pyrophosphate production during evolution and in contemporary organisms. Bio. Systems. 12: 177–180.Google Scholar
  17. 17.
    Lawson, J.W.R., R.W. Guynn, M. Cornell, and R.L. Veech. In: Gluconeogenesis, its regulation in mammalian species (Ed. R.W. Hanson and M.A. Mehlman ) pp. 48. Wiley, New York 1976.Google Scholar
  18. 18.
    Lee, J. P., J. LeGall, H. D. Peck, Jr. 1973. Isolation of assimilatory and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J. Bacteriol. 115: 529–542.Google Scholar
  19. 19.
    Lipmann, F., L. C. Tuttle. 1945. A specific micro-method for the determination of acylphosphates. J. Biol. Chem. 259: 21–28.Google Scholar
  20. 20.
    Lipmann, F. 965. Projecting backward from the present stage of the evolution of biosynthesis. _Iri (S.W. Fox, Ed) “The Origins of Prebiological Systems”, pp. 259–280. Academic Press, N.Y.Google Scholar
  21. 21.
    Liu, C.-L., H. D. Peck, Jr. 1981. Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum sp. J. Bacteriol. 145: 966–973.Google Scholar
  22. 22.
    Liu, C.-L., N. Hart, H. D. Peck, Jr. 1982. The utilization of inorganic pyrophosphate as a source of energy for the growth of sulfate reducing bacteria, Desulfotomaculum sp. Science (in press).Google Scholar
  23. 23.
    Ljungdahl, L. G., F. Bryant, L. Carreira, T. Saiki, J. Wiegel. 1981. Some aspects of thermophilic and extreme thermophilic anaerobic microorganisms. In Trends in the Biology of Fermentations for Fuels and Chemicals. (Hollaender, A. Ed.) Plenum Press, N.Y. Vol. 18. Basic Life Sciences, pp. 397–419.Google Scholar
  24. 24.
    Macy, J. M., L.G. Ljungdahl, G. Gottschalk. 1978. Pathway of succinate and propionate formation in Bacteroides fragilis. J. Bacterid. 134: 84–91.Google Scholar
  25. 25.
    Mansurova, S. E., Yu. A. Schakhov, I. S. Kolaev. 1977. Mitochondrial pyrophosphatase is a coupling factor of respiration and pyrophosphate synthesis. FEBS Lett. 74: 31–34.CrossRefGoogle Scholar
  26. 26.
    O’Brien, W. E., S. Bowien, H. G. Wood. 1975. Isolation and characterization of a pyrophosphate-dependent phosphofructo-kinase from Propionibacterium shermanii. J. Biol. Chem. 250: 8690–8695.Google Scholar
  27. 27.
    Odom, J. M. H. D. Peck, Jr. 1981. Localization of dehydrogenases, reductases and electron transfer components in the sulfate-reducing bacterium, Desulfovibrio gigas. J. Bacteriol. 147: 161–169.Google Scholar
  28. 28.
    Odom, J. M. H. D. Peck, Jr. 1981. Hydrogen cycling as a general mechanism for energy coupling in the sulfate reducing bacteria, Desulfovibrio sp. FEMS Lett. 12: 47–50.CrossRefGoogle Scholar
  29. 29.
    Peck, H. D., Jr. 1962. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev. 26: 67–94.Google Scholar
  30. 30.
    Pfennig, N., F. Widdel. 1981. Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle in “Biology of Inorganic Nitrogen and Sulfur”. (Ed. H. Bothe and A. Trebst). pp. 169–177. Springer-Verlag, Berlin.Google Scholar
  31. 31.
    Pfleiderer, C., J.-H. Klemme. 1980. Pyrophosphate-abhangige D-fructose-6-phosphate phosphotransferase in Rhodospirillaceae. Z. Natur forsch. 35c: 229–238.Google Scholar
  32. 32.
    Postgate, J. R. 1979. The sulphate-reducing bacteria. Cambridge University Press, Cambridge, England.Google Scholar
  33. 33.
    Reeves, R. E. 1968. A new enzyme with the glycolytic function of pyruvate kinase. J. Biol. Chem. 243: 3202–3204.Google Scholar
  34. 34.
    Reeves, R. E., D. J. South, H. J. Blytt, L. G. Warren. 1974. Pyrophosphate: D-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructo- kinase. J. Biol. Chem. 249: 7737–7741.Google Scholar
  35. 35.
    Reeves, R. E. J. B. Guthrie. 1975. Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem. Biophys. Res. Commun. 66: 1389–1395.Google Scholar
  36. 36.
    Reeves, R. E. 1976. How useful is the energy in inorganic pyrophosphate? TIBS 1: 53–55.Google Scholar
  37. 37.
    Rubtzov, P. M., N. V. Efremovich, I. S. Kulaev. 1976. The light-dependent synthesis of pyrophosphate in chloroplasts. Dokl. AN USSR 230: 1236–1237.Google Scholar
  38. 38.
    Searcy, R. L., N.M. Simms, J. A. Foreman, L. M. Bergquist. 1965. A study of the specificity of the Berthelot reaction. Clin. Chim. Acta. 12: 170–175.Google Scholar
  39. 39.
    Siu, P. M. L., H. G. Wood. 1962. Phosphoenolpyruvic carboxy-transphosphorylase, a CO2 fixation enzyme from propionic acid bacteria. J. Biol. Chem. 237: 3044–3501.Google Scholar
  40. 40.
    Stewart, G. J., J. W. Fitzgerald. 1982. Metabolism of exogenous uridine 5′-triphosphate, adenosine 5′-triphosphate and pyrophosphate by alkyl-sulfatase-producing bacteria. Int. J. Biochem. 13: 1019–1026.Google Scholar
  41. Ware, D. A., J. R. Postgate. 1971. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J. Gen. Microbiol. 67: 145–160.Google Scholar
  42. 42.
    Widdel, F. 1980. Anaerober Abbau von Fettsauren und Benzioe- saure durch neu isolierte Arten sulfalreduzierender Bakterien Dissertation, Univ. Gottingen.Google Scholar
  43. 43.
    Widdel, F., N. Pfennig. 1977. A new anaerobic sporing acetate oxidizing sulfate-reducing bacterium Desulfotomaculum (emend) acetoxidans. Arch. Microbiol. 112: 119–122.Google Scholar
  44. 44.
    Wiegel, J., L. G. Ljungdahl. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new extreme thermophilic anaerobic bacterium. Arch. Microbiol. 128: 343–348.Google Scholar
  45. 45.
    Wilson, L. G., R. S. Bandurski. 1958. Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J. Biol, chem. 233: 975–981.Google Scholar
  46. 46.
    Wolin, E. A., M. J. Wolin, R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882Google Scholar
  47. 47.
    Wood, H. G. 1977. Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Fed. Proc. 36: 2197–2205.Google Scholar
  48. 48.
    Wood, H. G., W. E. O’Brien, and G. Michaels. 1977. Properties of carboxytransphosphorylase; pyruvate phosphate dikinase; pyrophosphate phosphofructokinase and pyrophoshate-acetate kinase and their role in the metabolism of pyrophosphate. Adv. Enzymology 45: 85–155.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Harry D. PeckJr.
    • 1
  • Chi-Li Liu
    • 2
  • A. K. Varma
    • 3
  • L. G. Ljungdahl
    • 1
  • M. Szulczynski
    • 4
  • F. Bryant
    • 1
  • L. Carreira
    • 1
  1. 1.Department of BiochemistryUniversity of GeorgiaAthensUSA
  2. 2.Exxon ResearchLindenUSA
  3. 3.Jawaharlal Nehru UniversityNew DelhiIndia
  4. 4.A. Mickiewicz UniversityPoznanPoland

Personalised recommendations