Mutasynthesis and Directed Biosynthesis for the Production of New Antibiotics

  • Charles A. Claridge
Part of the Basic Life Sciences book series


The fact that this Symposium on the Biological Basis of New Developments in Biotechnology is being held at this time is evidence of the increasing awareness throughout the world of the impact that modern microbiology is now having upon the production of antibiotics, new products in medicine, alternate sources of fuel for our world and the development of new and more efficient plants to feed our peoples. An example of the recognition of these developments was seen recently when Scientific American devoted an entire issue to “Industrial Microbiology”.


Aminoglycoside Antibiotic Peptide Antibiotic Bacillus Circulans Anthracycline Antibiotic Mutational Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argoudelis, A. D., Coats, J. H., Johnson, L. E. 1974. Directed biosynthesis of new celestosaminide antibiotics by Streptomyces caelestis. J. Antibiot. 27: 738–743.CrossRefGoogle Scholar
  2. 2.
    Argoudelis, A. D., Eble, T. E., Mason, D. J. 1970. Studies on the biosynthesis of lincomycin V. Effect of ethionine on fermentation of S. lincolnensis. J. Antibiot. 23: 1–8.CrossRefGoogle Scholar
  3. 3.
    Behrens, O. K. 1949. Biosynthesis of penicillins, pp 657–679. In The Chemistry of Penicillin (H.T. Clarke, J.R. Johnson, and R. Robinson, Eds.),. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  4. 4.
    Birch, A. J. 1963. The biosynthesis of antibiotics. Pure and Applied Chemistry, 7: 527–537.CrossRefGoogle Scholar
  5. 5.
    Boxler, D. L., Brambilla, R., Davies, D. H., Mallams, A. K., McCombie, S. W., Morton, J. B., Reichert, P., Vernay, H. F. 1981. Semisynthetic aminoglycoside antibacterials. 9. Synthesis of novel 1- and 3-substituted and 1- and 3-epi substituted derivatives of sisomicin and gentamicin from the 1- and 3-oxo-derivatives. J. Chem. Soc. Perkin I 1981. pp 2168–2185.Google Scholar
  6. 6.
    Came, P. E., O’Connor, J. R., Dobson, R. A., Wagner, R. B., Fabian, R. J. 1979. Antibacterial activities, nephrotoxicity, and ototoxicity of a new aminoglycoside, Win 42122–2. Antimicrob. Agents and Chemother. 16: 813–822.Google Scholar
  7. 7.
    Claridge, C. A. 1979. Amioglycoside antibiotics, pp 151–238. In Secondary products of metabolism ( A.H. Rose, Ed.). Academic Press, London.Google Scholar
  8. 8.
    Claridge, C. A., Bush, J. A., Doyle, T. W., Nettleton, D. E., Mosley, J. E., Kimball, D. 1982. New mitomycin analogues produced by directed biosynthesis. Abstracts of the Annual Meeting of the Am. Soc. for Microbiology. Abstract 028.Google Scholar
  9. 9.
    Cleophax, J., S. D. Gero, J. LeBoul, M. Akhtar, J. E. G. Barnett, C. J. Pearce. 1976. A chiral synthesis of D-(+)-2,6- dideoxystreptamine and its microbial incorporation into novel antibiotics. J. Am. Chem. Soc. 98: 7110–7112.Google Scholar
  10. 10.
    Daum, S. J., D. Rosi, W. A. Goss. 1977. Mutational biosynthesis by idiotrophs of Micromonospora purpurea. II Conversion of non-amino containing cyclitols to aminoglycoside antibiotics. J. Antibiot. 30: 90–105.CrossRefGoogle Scholar
  11. 11.
    DeFuria, M. D., C. A. Claridge. 1976. Aminoglycoside antibiotics produced by the genus Bacillus. pp 427–436. In Microbiology - 1976 ( D. Schlessinger, Ed.). American Society for Microbiology, Washington, D.C.Google Scholar
  12. 12.
    Demain, A. L. 1981. Applied microbiology - A personal view, pp 1/1–1/31, In Essays in applied microbiology ( J.R. Norris and M.H. Richmond, Eds.), John Wiley and Sons, Ltd.Google Scholar
  13. 13.
    Dhar, M. M., C. Singh, A. W. Khan, A. J. Arif, C. M. Gupta, A. P. Bhaduri. 1971. Studies on the cell-free synthesis of echinomycin and an echinomycin analogue. Pure Appl. Chem. 28: 469–473.Google Scholar
  14. 14.
    Doershuk, A. P., J. R. D. McCormick, J. J. Goodman, S. A. Szumski, J. A. Growich, P. A. Miller, B. A. Bitler, E. R. Jensen, M. A. Petty, A. S. Phelps. 1956. The halide metabolism of Streptomyces aureofaciens mutants. The biosynthesis of 7-chloro36-, 7-chloro and 7-bromotetracycline and tetracycline. J. Am. Chem. Soc. 78: 1508–1509.CrossRefGoogle Scholar
  15. 15.
    Dulaney, E. L., I. Putter, D. Drescher, L. Chaiet, W. J. Miller, F. J. Wolf, D. Hendlin. 1962. Transethylation in antibiotic biosynthesis. I. An ethyl analogue of oxytetracycline. Biochim. Biophys. Acta. 60: 447–449.CrossRefGoogle Scholar
  16. 16.
    Fleck, W. F. 1979. Genetic approaches to new streptomycete products, pp 117–122. In Genetics of Industrial Microorganisms ( O.K. Sebek and A.I. Laskin, Eds.), American Society for Microbiology, Washington, D.C.Google Scholar
  17. 17.
    Fujiwara, T., Y. Takahashi, K. Matsumoto, E. Kondo. 1980a. Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of Bacillus circulans. J. Antibiot. 33: 824–829.CrossRefGoogle Scholar
  18. 18.
    Fujiwara, T., Y. Takahashi, K. Matsumoto, and E. Kondo. 1980b. Production of a new aminoglycoside antibiotic by a mutant of Bacillus circulans. J. Antibiot. 33: 836–841.CrossRefGoogle Scholar
  19. 19.
    Furumai, T., K. Takeda, A.Kinumaki, Y. Ito, T. Okuda. 1979. Biosynthesis of butirosins II. Biosynthetic pathway of butirosins elucidated from co-synthesis and feeding experiments. J. Antibiot. 32: 891–899.Google Scholar
  20. 20.
    Hamill, R. L., R. P. Elander, J. A. Mabe, M. Gorman. 1970. Metabolism of tryptophan by Pseudomonas aureofaciens III. Production of substituted pyrrolnitrins from tryptophan analogues. Appl. Microbiol. 19: 721–725.Google Scholar
  21. 21.
    Isono, K., R. J. Suhadolnik. 1976. The biosynthesis of natural and unnatural polyoxins by Streptomyces cacaoi. Arch. Biochem. Biophys. 173: 141–153.CrossRefGoogle Scholar
  22. 22.
    Iyengar, B. S., H.-J. Lin, L. Cheng, W. A. Remers, W. T. Bradner. 1981. Development of new mitomycin C and profiromycin analogues. J. Med. Chem. 24: 975–981.CrossRefGoogle Scholar
  23. 23.
    Kase, H., T. Iida, Y. Odakura, K. Shirahata, K. Nakayama. 1980. Accumulation of 2-deoxy-scyllo-inosamine by a 2-deoxy- streptamine-requiring idotroph of Micromonospora sagmiensis. J. Antibiot. 25.: 1210–1212.Google Scholar
  24. 24.
    Kase, H., S. Kitamura, K. Nakayama. 1982. Production of antibiotic SU-2 complex by a 2-deoxystreptamine idiotroph of Micromonospora sagamiensis. J. Antibiot. 35: 385–390.CrossRefGoogle Scholar
  25. 25.
    Katz, E., A. L. Demain. 1977. The peptide antibiotics of Bacillus: Chemistry, biogenesis and possible functions. Bacteriol. Rev. 41: 449–474.Google Scholar
  26. 26.
    Kawaguchi, H., H. Tsukiura, K. Tomita, M. Konishi, K. Saito, S. Kobura, K. Numata, K. Fujisawa, T. Miyaki, M. Hatori, H. Koshiyama. 1977. Tallysomycin, a new antitumor antibiotic complex related to bleomcin I. Production, isolation and properties. J. Antibiot. 30: 779–788.Google Scholar
  27. 27.
    Kitamura, S., H. Kase, Y,. Odakura, T. Iida, K. Shirahata, K. Nakayama. 1982. 2-Hydroxysagamicin: A new antibiotic produced by mutational biosynthesis of Micromonospora sagamiensis. J. Antibiot. 325: 94–97.Google Scholar
  28. 28.
    Kojima, M., A. Satoh. 1973. Microbial semi-synthesis of aminoglycoside antibiotics by mutants of S. ribosidificus and S. kanamyceticus. J. Antibiot. 26: 784–786.CrossRefGoogle Scholar
  29. 29.
    Konishi, M., H. Ohkuma, F. Sakai, T. Tsuno, H. Koshiyama, T. Naito, H. Kawaguchi. 1981. BBM-928, a new antitumor antibiotic complex. III. Structure determination of BBM-928A, B, and C. J. Antibiot. 34: 148–159.CrossRefGoogle Scholar
  30. 30.
    Leitner, F., K. E. Price. 1982. Aminoglycosides under development, pp 29–64. In The Aminoglycosides (A. Whelton and H.C. Neu, Eds.),. Marcel Dekker, Inc. New York.Google Scholar
  31. 31.
    Maezawa, I. A., A. Kinumaki, M. Suzuki. 1976. Biological glycosidation of macrolide aglycones. I. Isolation and characterization of 5-0-micaminosyl narbonolide and 9-dihydro-5-0-mycaminosyl narbonolide. J. Antibiot. 29: 1203–1208.CrossRefGoogle Scholar
  32. 32.
    Maezawa, I. A., A. Kinumaki, M. Suzuki. 1978. Biological glycosidation of macrolide aglycones. II. Isolation and characterization of desosaminyl-platenolide I. J. Antibiot. 31: 309–318.CrossRefGoogle Scholar
  33. 33.
    Martin, J. R., R. S. Egan, A. W. Goldstein, S. L. Mueller, E. A. Hirner, R. S. Stanaszek. 1974. 8,8a-Deoxyoleandolide: Elaborated by a blocked mutant of the erythromycin-producing organism Streptomyces erythreus. J. Antibiot. 27: 570–573.Google Scholar
  34. 34.
    Matsuzawa, Y., A. Yoshimoto, T. Oki, H. Naganawa, T. Takeuchi, H. Umezawa. 1980. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus II. Structure of new anthracycline antibiotics obtained by microbial glycosidation and biological activity. J. Antibiot. 33: 1341–1347.CrossRefGoogle Scholar
  35. 35.
    Miyaki, T., K. Numata, Y. Nishiyama, O. Tenmyo, M. Hatori, H. Imanishi, M. Konishi, H. Kawaguchi. 1981. Tallysomycin, a new antitumor antibiotic complex related to bleomycin. V. Production characterization, and antitumor activity of Tallysomycin S10b, a new biosynthetic tallysomycin derivative. J. Antibiot. 34: 665–674.CrossRefGoogle Scholar
  36. 36.
    Nagaoka, K., A. L. Demain. 1975. Mutational biosynthesis of a new antibiotic, Streptomutin A, by an idiotroph of Streptomyces griseus. J. Antibiot. 28: 627–635.CrossRefGoogle Scholar
  37. 37.
    Oka, Y., H. Ishida, M. Morioka, Y. Numasaki, T. Yamafuji, T. Osono, H. Umezawa. 1981. Combimicins, new Kanamycin derivatives bioconverted by some Micromonosporas. J. Antibiot. 34: 777–781.CrossRefGoogle Scholar
  38. 38.
    Oki, T., A. Yoshimoto, Y. Matsuzawa, T. Takeuchi, H. Umezawa. 1980. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. I. Glycosidation of various anthracyclines by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone. J. Antibiot. 33: 1331–1340.CrossRefGoogle Scholar
  39. 39.
    Oki, T., A. Yoshimoto, Y. Matsuzawa, T. Takeuchi, H. Umezawa. 1981. New anthracycline antibiotic, 2-hydroxy- aclacinomycin A. J. Antibiot. 34: 916–918.CrossRefGoogle Scholar
  40. 40.
    Okumura, Y. K. Okamura, T. Takei, K. Kuono, J. Lein, T. Ishikura, Y. Fukagawa. 1979. Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein, I. Taxonomy and fermentation. J. Antibiot. 32: 575–583.CrossRefGoogle Scholar
  41. 41.
    Okumura, Y. T. Takei, M. Sakamoto, T. Ishikura, Y. Fukagawa. 1979. Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein. II. Production, biological properties and structure of neoviridogrisein II. J. Antibiot. 32: 584–592.CrossRefGoogle Scholar
  42. 42.
    Okumura, Y., T. Takei, M. Sakamoto, T. Ishikura, Y. Fukagawa. 1979. Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein. III. Production, structures, and biological properties of neoviridogriseins I and III. J. Antibiot. 32: 1002–1010.CrossRefGoogle Scholar
  43. 43.
    Omura, S., H. Ikeda, H. Matsubara, N. Sadakane. 1980. Hybrid biosynthesis and absolute configuration of macrolide antibiotic M-4365G1. J. Antibiot. 33: 1570–1572.CrossRefGoogle Scholar
  44. 44.
    Perlman, D. 1980. Some problems on the new horizons of applied microbiology. Dev. Indust. Microb. 21:xv-xxii.Google Scholar
  45. 45.
    Rinehart, K. L., Jr. 1977. Mutasynthesis of new antibiotics. Pure and Appl. Chem. 49; 1361–1384.Google Scholar
  46. 46.
    Rinehart, K. L., Jr. 1980. Biosynthesis and mutasynthesis of aminocyclitol antibiotics, pp 335–370. In Amino-cyclitol antibiotics (Rinehart, K. L., Jr. and T. Suami Eds.), ACS Symposium Series No. 125. American Chemical Society, Washington, D.C.Google Scholar
  47. 47.
    Rinehart, K. L., Jr., J. M. Malik, R. S. Nystrom, R. M. Stroshane, S. T. Truitt, M. Taniguchi, J. P. Rolls, W. J. Haak, B. S. Ruff. 1974. Biosynthetic incorporation of [1- 13C] glucosamine and [6-13 C] glucose into neomycin. J. Am. Chem. Soc. 96: 2263–2265.CrossRefGoogle Scholar
  48. 48.
    Rinehart, K. L., Jr., and R. M. Stroshane. 1976. Biosynthesis of aminocyclitol antibiotics. J. Antibiot. 29: 319–353.CrossRefGoogle Scholar
  49. 49.
    Rosi, D., W. A. Goss, S. J. Daum. 1977. Mutational biosynthesis by idiotrophs of Micromonospora purpurea. I. Conversion of aminocyclitols to new aminoglycoside antibiotics. J. Antibiot. 30: 88–97.Google Scholar
  50. 50.
    Sebek, O. K. 1974. On the biosynthesis and biomodification of novobiocin. Abstr. 2nd Int. Symp. Genet. Ind. Microorg. Academic Press, London.Google Scholar
  51. 51.
    Sebek, O. K. 1979. Novobiocin and other antibiotics as potential mutasynthetic models pp 318–321. In Microbiology-1979 ( D. Schlessinger, Ed.). American Society for Microbiology, Washington, D.C.Google Scholar
  52. 52.
    Shier, W. T., S. Ogawa, M. Hitchens, K. L. Rinehart, Jr. 1973. Chemistry and biochemistry of the neomycins. XVII. Bioconversion of aminocyclitols to aminocyclitol antibiotics. J. Antibiot. 26: 551–561.CrossRefGoogle Scholar
  53. 53.
    Shier, W. T., K. L. Rinehart, Jr., D. Gottlieb. 1969. Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc. Natl. Acad. Sci. U.S.A. 63: 198–204.CrossRefGoogle Scholar
  54. 54.
    Shier, W. T., P. C. Shaefer, D. Gottlieb, K. L. Rinehart, Jr. 1974. Use of mutants in the study of aminocyclitol antibiotic biosynthesis and the preparation of the hybrimycin C complex. Biochemistry 13: 5073–5078.CrossRefGoogle Scholar
  55. 55.
    Shirahata, K., H. Kase, S. Kitamura, T. Iida. 1982. The structures of aminoglycoside antibiotics SU-1, 2 and 3. J. Antibiot. 35: 520–523.CrossRefGoogle Scholar
  56. 56.
    Slechta, L., J. H. Coats, 1974. Studies of the biosynthesis of spectinomycin. Abstracts 14th Interscience Conference on Antimicrobial Agents and Chemotherapy No. 294. San Francisco, California.Google Scholar
  57. 57.
    Takeda, K., A. Kinumaki, T. Furumai, T. Yamaguchi, S. Oshima, Y. Ito. 1978a. Mutational biosynthesis of butirosin analogs. J. Antibiot. 31: 247–249.CrossRefGoogle Scholar
  58. 58.
    Takeda, K., A. Kinumaki, H. Hayasaka, T. Yamaguchi, Y. Ito. 1978b. Mutational biosynthesis of butirosin analogs. II. 3′,4′-dideoxy-6′-N-methylbutirosins, new semisynthetic aminoglycosides. J. Antibiot. 31: 1031–1038.CrossRefGoogle Scholar
  59. 59.
    Takeda, K., A. Kinumaki, S. Okuno, T. Matsushita, Y. Ito. 1978c. Mutational biosynthesis of butirosin analogs. III. 6f-N-methylbutirosins and 3′-4′-dideoxy-6′C-methylbutirosins, new semisynthetic aminoglycosides. J. Antibiot. 31: 1039–1045.CrossRefGoogle Scholar
  60. 60.
    Takeda, K., S. Okuno, Y. Ohashi, T. Furumai. 1978d. Mutational biosynthesis of butirosin analogs. I. Conversion of neamine analogs into butirosin analogs by mutants of Bacillus circulans. J. Antibiot. 31: 1023–1030.Google Scholar
  61. 61.
    Testa, R. T., G. H. Wagman, P. J.L. Daniels, M. J. Weinstein. 1974. Mutamicins: Biosynthetically created new sisomicin analogues. J. Antibiot. 27: 917–921.CrossRefGoogle Scholar
  62. 62.
    Umezawa, H. 1976. Bleomycin: Discovery, chemistry and action, pp 3–36. In Fundamental and Clinical Studies Bleomycin (S.K. Carter, T. Ichikawa, G. Mathe, and H. Umezawa, Eds.), University of Tokyo Press, Tokyo, Japan.Google Scholar
  63. 63.
    Waitz, J. A., G. H. Miller, E. Moss, Jr., P. J. S. Chiu. 1978. Chemotherapeutic evaluation of 5-episisomicin (Sch 22591), a new semisynthetic aminoglycoside. Antimicrob. Agents and Chemother. 13: 41–48.Google Scholar
  64. 64.
    Walton, R. B., L. E. McDaniel, H. B. Woodruff. 1962. Biosynthesis of novobiocin analogues. Dev. Ind. Microbiol. 2: 370–375.Google Scholar
  65. 65.
    Werner, R. G., A. L. Demain. 1981. Directed biosynthesis of new indolmycins. J. Antibiot. 34: 551–554.CrossRefGoogle Scholar
  66. 66.
    Williamson, M. P., D. Gauvreau, D. H. Williams, M. J. Waring. 1982. Structure and conformation of fourteen antibiotics of the quinoxaline group determined by NMR. J. Antibiot. 35: 62–66.CrossRefGoogle Scholar
  67. 67.
    Yoshida, T., Y. Kimura, K. Katagiri. 1968. Novel quinomy- cins: Biosynthetic replacement of the chromophores. J. Antibiot. 21: 465–467.CrossRefGoogle Scholar
  68. 68.
    Yoshimoto, A., Y. Matsuzawa, Y. Matsushita, T. Oki, T. Takeuchi, H. Umezawa. 1981. Trisarubicinol, new antitumor anthracycline antibiotic. J. Antibiot. 34: 1492–1494.CrossRefGoogle Scholar
  69. 69.
    Yoshimoto, A., Y. Matsuzawa, T. Oki, H. Naganawa, T. Takeuchi, H. Umezawa. 1980. Microbial conversion of e-pyrromycinone and e-isorhodomycinone to 1-hydroxy-13-dihydrodaunomycin and N-formyl-l-hydroxy-13-dihydrodaunomycin and their bioactivi- ties. J. Antibiot. 33: 1150–1157.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Charles A. Claridge
    • 1
  1. 1.Pharmaceutical Research and Development DivisionBristol-Myers CompanySyracuseUSA

Personalised recommendations