Advertisement

Hemostasis and Atherosclerosis

  • Fedor Bachmann
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 58)

Abstract

This review, although not intending to call into question the important role of hyperlipidemia and especially of LDL-cholesterol in the pathogenesis of atherosclerosis, aims to familiarize the reader with other etiologic factors of atherosclerosis. Recent experimental work clearly shows that under certain conditions, the development of atherosclerotic plaques can be inhibited despite hypercholesteremia. Kramsch et al. fed rabbits an atherogenic diet with and without increasing doses of lanthanum chloride, a potent calcium antagonist. Whereas all animals exhibited severe cholesteremia of 20 to 25 g/l, extensive atherosclerotic lesions comprising 64% of the aortic surface area developed only in those given the atherogenic diet without lanthanum’. There was a progressive reduction of aortic surface area involvement with increasing dosage of lanthanum to 16% (20 mg LaC13/kg/d) and to less than 3% (40 mg LaC13/kg/d). Fuster et al. observed that the aortas of pigs afflicted with homozygous von Willebrand’s disease did not exhibit multiple atheromatous plaques whereas those of normal pigs did2. These authors undertook a prospective trial on the role of von Willebrand factor (the multimeric blood coagulation Factor VIII complex) in the pathogenesis of atherosclerosis. They fed a 2% cholesterol diet to 11 control pigs and to 7 pigs with von Willebrand’s disease. All of the controls developed atherosclerotic plaques in the aorta and in 9, at least 13% of the entire surface was involved. In contrast, 4 of the pigs with von Willebrand’s disease did not develop such lesions, 2 had lesions affecting 6 and 7% of the aortic surface and only one had 13% of the aortic surface involved. In pigs with von Willebrand disease, the extent of endothelial damage was equally severe as in the controls, and there was extensive nonproliferative, nonatherosclerotic intimai fat infiltration.

Keywords

Fibrinolytic Activity Platelet Reactivity Platelet Factor Atherogenic Diet Type Versus Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

G

(giga) = 109

PDGF

platelet derived grow factor

PF4

platelet factor 4

SMC

smooth muscle cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Kramsch, A. J. Aspen and C. S. Apstein, Suppression of experimental atherosclerosis by the Ca++-antagonist lanthanum, J. Clin. Invest., 65: 967–981 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    V. Fuster, E. J. W. Bowie, J. C. Lewis, D. N. Fass, Ch. A. Owen and A. L. Brown, Resistance to arteriosclerosis in pigs with von Willebrand’s disease, J. Clin. Invest., 61: 722–730 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    K. von Rokitansky, A manual of pathological anatomy, Sydenham Society, London, Vol. 4, (1852), 261–272.Google Scholar
  4. 4.
    R. Virchow, Phlogose und Thrombose im Gefässystem, Gesammelte Abhandlungen zur wissenschaftlichen Medizin, Meidinger Sohn und Companie, (1856), 458.Google Scholar
  5. 5.
    J. B. Duguid, Pathogenesis of arteriosclerosis, Lancet, 2: 925927 (1949).Google Scholar
  6. 6.
    J. E. French, Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium, Int. Rev. Exp. Pathol., 5: 253–353 (1966).PubMedGoogle Scholar
  7. 7.
    J. F. Mustard and M. A. Packham, The role of blood and platelets in atherosclerosis and the complication of atherosclerosis, Thromb. Diath. Haemorrh., 33: 444–456 (1975).PubMedGoogle Scholar
  8. 8.
    M. B. Stemerman and R. Ross, Experimental Arteriosclerosis. I. Fibrous plaque formation in primates; an electron microscope study, J. Exp. Med., 136: 769–789 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Ross and J. A. Glomset, Atherosclerosis and the arterial smooth muscle cell, Science, 180: 1332–1339 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Ross and J. A. Glomset, The pathogenesis of atherosclerosis New Eng. J. Med., 295:369–377 and 420–425 (1976).Google Scholar
  11. 11.
    M. B. Stemerman, Platelet and smooth muscle cell responses after endothelial desquamation, Thrombos. Haemostas., 46: 248 (1981).Google Scholar
  12. 12.
    S. Moore, R. J. Friedman, D. P. Singal, J. Gauldie, M.A. Blajchman and R. S. Roberts, Inhibition of injury induced thromboatherosclerotic lesions by anti-platelet serum in rabbits, Thrombos. Haemostas., 35: 70–81 (1976).Google Scholar
  13. 13.
    R. J. Friedman, M. B. Stemerman, B. Wenz, S. Moore, J. Gauldie, M. Gent, M. L. Tiell and T. S. Spaet, The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits, J. Clin. Invest., 60: 1191–1201 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    L. A. Harker, R. Ross, S. J. Slichter and C. R. Scott, Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis, J. Clin. Invest., 58: 731–741 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    S. D. Balk, J. F. Whitfield, T. Yondale and A. Braun, Roles of calcium, serum, plasma and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts, Proc. Nat. Acad. Sci. USA, 70: 675–679 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Ross, J. Glomset, B. Kariya and L. Harker, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Nat. Acad. Sci. USA, 71: 1207–1210 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    N. H. Antoniades, D. Stathakos and C. D. Scher, Isolation of a cationic polypeptide from human serum that stimulates proliferation of 3T3 cells, Proc. Nat. Acad. Sci. USA, 72: 2635–2639 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    B. Westermark and A. Wasteson, A platelet factor stimulating human normal glial cells, Exp. Cell Res., 98: 170–174 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    R. B. Rutherford and R. Ross, Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate, J. Cell Biol., 69: 196–203 (1976)PubMedCrossRefGoogle Scholar
  20. 20.
    C. W. Castor, J. C. Ritchie, M. E. Scott and S. L. Whitney, Connective tissue activation:XI. Stimulation of glycosaminoglycan and DNA formation by a platelet factor, Arthritis Rheum., 20: 859–868 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    D. R. Kaplan, F. C. Chao, Ch. D. Stiles, H. N. Antoniades and Ch. D. Scher, Platelet a -granules contain a growth factor for fibroblasts, Blood, 53: 1043–1052 (1979).PubMedGoogle Scholar
  22. 22.
    J. M. Gerrard, D. R. Phillips, G. H. R. Rao, E. F. Plow, D. A. Walz, R. Ross, L. A. Harker and J. G. White, Biochemical studies of two patients with the gray platelet syndrome. Selective deficiency of platelet alpha granules, J. Clin. Invest., 66: 102–109 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    B. L. Linder, A. Chernoff, K. L. Kaplan and D. S. Goodman, Release of platelet-derived growth factor from human platelets by arachidonic acid, Proc. Nat. Acad. Sci. USA, 76: 4107–4111 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    H. N. Antoniades, Ch. D. Scher and Ch. D. Stiles, Purification of human platelet-derived growth factor, Proc. Nat. Acad. Sci. USA, 76: 1809–1813 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    C. H. Heldin, B. Westermark and A. Wasteson, Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition, Biochem. J., 193: 907–913 (1981).PubMedGoogle Scholar
  26. 26.
    W. J. Pledger, Ch. D. Stiles, H. N. Antoniades and Ch. D. Scher, Induction of DNA synthesis in Balb/c-3T3 cells by serum components:reevaluation of the commitment process, Proc. Nat. Acad. Sci. USA, 74: 4481–4485 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    D. R. Clemmons, J. J. van Wyk and W. J. Pledger, Sequential addition of platelet factor and plasma to BALB/c 3T3 fibroblast cultures stimulates somatomedin-C binding early in cell cycle, Proc. Nat. Acad. Sci. USA, 77: 6644–6648 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    C. H. Heldin, B. Westermark and A. Wasteson, Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia, Proc. Nat. Acad. Sci. USA, 78: 3664–3668, (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    J. L. Goldstein and M. S. Brown, The low-density lipoprotein pathway and its relation to atherosclerosis, Ann. Rev. Biochem., 46: 897–930 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    L. D. Witte and J. A. Cornicelli, Platelet-derived growth factor stimulates low density lipoprotein receptor activity in cultured human fibroblasts, Proc. Nat. Acad. Sci. USA, 77: 5962–5966 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    G. R. Grotendorst, H. E. J. Seppa, H. K. Kleinman and G. R. Martin, Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor, Proc. Nat. Acad. Sci. USA, 78: 3669–3672 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    R. R. Botti and O. D. Ratnoff, The clot-promoting effect of soaps of long-chain saturated fatty acids, J. Clin. Invest., 42: 1569–1577 (1963).PubMedCrossRefGoogle Scholar
  33. 33.
    J. C. Hoak, A. A. Spector, G. L. Fry and E. D. Warner, Effect of free fatty acids on ADP-induced platelet aggregation, Nature, 228: 1330–1332 (1970).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Farbiszewski and K. Worowski, Enhancement of platelet aggregation and adhesiveness by betalipoprotein, J. Atheroscler. Res., 8: 988–990 (1968).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Nordçzy, Lipids as triggering factors in thrombosis, Thrombos. Haemostas., 35: 32–48 (1976).Google Scholar
  36. 36.
    H. C. Kwaan, J. A. Colwell, S. Cruz, N. Suwanwela and J. C. Dobbie, Increased platelet aggregation in diabetes mellitus, J. Lab. Clin. Med., 80: 236–246 (1972).PubMedGoogle Scholar
  37. 37.
    B. C. O’Malley, W. R. Timperley, J. D. Ward, N. R. Porter and F. E. Preston, Platelet abnormalities in diabetic peripheral neuropathy, Lancet, 2: 1274–1276 (1975).PubMedCrossRefGoogle Scholar
  38. 38.
    A. S. Ward, N. Porter, F. E. Preston and V. Morris-Jones, Platelet aggregation in patients with peripheral vascular disease, Atherosclerosis, 29: 63–68 (1978).PubMedCrossRefGoogle Scholar
  39. 39.
    P. P. Steele, H. S. Weily, H. Davies and E. Genton, Platelet function studies in coronary artery disease, Circulation, 48: 1194–1200 (1975).Google Scholar
  40. 40.
    F. Dreyfuss and J. Zahavi, Adenosine diphosphate-induced platelet aggregation in myocardial infarction and ischaemic heart disease, Atherosclerosis, 17: 107–120 (1973).PubMedCrossRefGoogle Scholar
  41. 41.
    G. Danta, Second phase platelet aggregation induced by adenosine diphosphate in patients with cerebral vascular disease and in control subjects, Thromb. Diath. Haemorrh., 23: 159–169 (1970).PubMedGoogle Scholar
  42. 42.
    Z. Kalendovsky, J. Austin and P. P. Steele, Increased platelet aggregability in young patients with stroke, Arch. Neurol., 32: 13–20 (1975).PubMedCrossRefGoogle Scholar
  43. 43.
    K. K. Wu and J. C. Hoak, Increased platelet aggregation in patients with transient ischemic attacks, Stroke, 6: 521–524 (1975).PubMedCrossRefGoogle Scholar
  44. 44.
    L. A. Anderson and J. Gormsen, Platelet aggregation and fibrinolytic activity in transient cerebral ischemia, Acta neurol. scand., 55: 76–82 (1976).CrossRefGoogle Scholar
  45. 45.
    J. W. Ten Cate, J. Vos, H. Oosterhuis, D. Prenger and C. S. P. Jenkins, Spontaneous platelet aggregation in cerebrovascular disease, Thrombos. Haemostas., 39: 223–229 (1978).Google Scholar
  46. 46.
    A. C. A. Carvalho, R. W. Colman and R. S. Lees, Platelet function in hyperlipoproteinemia, New Engl. J. Med., 290: 434–438 (1974).PubMedCrossRefGoogle Scholar
  47. 47.
    J. H. Daugherty, D. E. Levy and B. B. Weksler. Platelet activation in acute cerebral ischemia–serial measurements of platelet function in cerebrovascular disease, Lancet, 1: 821–824 (1974).Google Scholar
  48. 48.
    K. L. Mettinger, D. Nyman, K. G. Kjellin, A. Sidén and C. E. Söderström, Factor VIII related antigen, antithrombin III, spontaneous platelet aggregation and plasminogen activator in ischemic cerebrovascular disease. A study of stroke before 55, J. Neurol. Sci., 41: 31–38 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    D. R. Rosing, D. R. Redwood, P. Brakman, T. Astrup and S. E. Epstein, Impairment of the diurnal fibrinolytic response in man. Effects of aging, type IV hyperlipoproteinemia, and coronary artery disease, Circ. Res., 32: 752–758 (1973).PubMedGoogle Scholar
  50. 50.
    J. R. O’Brien, M. D. Etherington and S. Jamieson, Acute platelet changes after large meals of saturated and unsaturated fats, Lancet, 1: 878–880 (1976).PubMedCrossRefGoogle Scholar
  51. 51.
    J. R. O’Brien, M. D. Etherington and S. Jamieson, Effect of a diet of polyunsaturated fats on some platelet-function tests, Lancet, 2: 995–997 (1976).PubMedCrossRefGoogle Scholar
  52. 52.
    S. Renaud, R. Morazain, L. McGregor and F. Baudier, Dietary fats and platelet functions in relation to atherosclerosis and coronary heart disease, Haemostasis, 8: 234–251 (1979).PubMedGoogle Scholar
  53. 53.
    T. W. Meade, W. R. S. North, R. Chakrabarti, Y. Stirling, A. P. Haines, S. G. Thompson and M. Brozovic, Haemostatic function and cardiovascular death: early results of a prospective study, Lancet, 1: 1050–1054 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    P. Brakman, T. Astrup, R. I. Levy and D. S. Fredrickson, Resting levels of blood fibrinolysis in hyperlipoproteinemia, J. Appl. Physiol., 36: 430–433 (1974).PubMedGoogle Scholar
  55. 55.
    I. Lipinska, B. Lipinski and V. Gurewich, Lipoproteins, fibrino-lytic activity and fibrinogen in patients with occlusive vascular disease and in healthy subjects with a family history of heart attacks, Artery, 6: 254–264 (1979).Google Scholar
  56. 56.
    P. Andersen, Hyperlipidaemia and reduced fibrinolytic activity associated with thromboembolic complications in a family, Acta Med. Scand., 200: 289–291 (1976).PubMedCrossRefGoogle Scholar
  57. 57.
    I. D. Walker, J. F. Davidson, I. Hutton and T. D. V. Lawrie, Disordered “fibrinolytic potential” in coronary heart disease, Thrombos. Res., 10: 509–520 (1977).CrossRefGoogle Scholar
  58. 58.
    R. K. Dube, P. K. Saha, B. Dube, B. C. Katiyar and P. V. B. Rao, Alterations in blood fibrinolysis in occlusive stroke, Indian J. Med. Res., 68: 492–494 (1978).PubMedGoogle Scholar
  59. 59.
    L. O. Pilgeram, A. N. Chee and G. von dem Bussche, Evidence for abnormalities in clotting and thrombolysis as a risk factor for stroke, Stroke, 4: 643–657 (1973).PubMedCrossRefGoogle Scholar
  60. 60.
    S. Isacson and I. M. Nilsson, Defective fibrinolysis in blood and vein walls in recurrent “idiopathic” venous thrombosis, Acta Chir. Scand., 138: 313–319 (1972).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Fedor Bachmann
    • 1
  1. 1.Hematology Division and Thrombosis Research LaboratoryUniversity of Lausanne, Medical School, CHUVLausanneSwitzerland

Personalised recommendations