Myocardial Lipids in Relation to Coronary Artery Disease in Man

  • Sigmundur Gudbjarnason
  • Jonas Hallgrimsson
  • Gudrun Skuladottir
  • A. Emilsson
  • A. Gudmundsdottir
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 58)


The purpose of this study was to examine the fatty acid composition and content of phospholipids, and free fatty acids in human heart muscle samples obtained at autopsy from people that died suddenly in accidents and from people that died suddenly from heart disease, with or without coronary artery disease.


Arachidonic Acid Sudden Cardiac Death Heart Muscle Anabolic Steroid Phosphatidyl Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Schwartz, J. M. Wood, J. C. Allen, E. P. Bornet, M. L. Entman, M. A. Goldstein, L. A. Sordahl, M. Suzuki, and R. M. Lewis, Biochemical and morphologic correlates of cardiac ischemia, I Membrane systems, Am. J. Cardiol., 32: 46–61 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Gudbjarnason and G. Oskarsdottir, Modification of fatty acid composition of rat heart lipids by feeding cod liver oil, Biochim. Biophys. Acta, 487: 10–15 (1977).Google Scholar
  3. 3.
    A. Emilsson and S. Gudbjarnason, Changes in fatty acyl chain composition of rat heart phospholipids induced by noradrenaline. Biochim. Biophys. Acta, 664: 82–88 (1981).PubMedGoogle Scholar
  4. 4.
    S. Gudbjarnason, G. Oskarsdottir, B. Doell and J. Hallgrimsson, Myocardial membrane lipids in relation to cardiovascular disease, Advances in cardiol., 25: 130–144 (1978).Google Scholar
  5. 5.
    G. Rouser, G. I. Nelson and S. Fleischer, Lipid composition of animal cell membranes, organelles and organs, in: Biological Membranes, D. Chapman, ed., Academic Press, Vol., 1:5–69 (1968).Google Scholar
  6. 6.
    S. Gudbjarnason and I. Hallgrimsson, Cardiac lipids and ischemic tolerance, in: “Ischemic Myocardium and Antianginal Drugs”, M. M. Winbury and Y. Abiko, ed., Raven Press p. 213–224 (1979).Google Scholar
  7. 7.
    J. Dyerberg, H. O. Bang, E. Stofferson, S. Moncada and J. R. Vane, Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis, Lancet, 2: 117–119 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Saynor and D. Verel, Effect of a marine oil high in eicosapentaenoic acid on blood lipids and coagulation, IRCS Medical Science, 8: 378–379 (1980).Google Scholar
  9. 9.
    S. Gudbjarnason and A. Emilsson, Unpublished observations.Google Scholar
  10. 10.
    A. S. Blix, J. K. Kjekshus, I. Enge and A. Bergen, Myocardial blood flow in the diving seal, Acta Physiol. Scand., 96: 277–280 (1976).Google Scholar
  11. 11.
    M. Fry and D. Green, Cardiolipin requirements for electron transfer in complex I and III of the mitochondrial respiratory chain, J. Biol. Chem., 256: 1874–1880 (1981).PubMedGoogle Scholar
  12. 12.
    O. Colard, A. Kervabon and C. Roy, Effects on adenylate cyclase activities of unsaturated fatty acid incorporation into rat liver plasma membrane phospholipids, Specific modulation by linoleate, Biochem. Biophys. Res. Comm., 95: 97–102 (1980).CrossRefGoogle Scholar
  13. 13.
    E. G. Lakatta, Age-related alterations in the cardiovascular response to adrenergic mediated stress, Fed. Proceed. Vol., 39: 3173–3177 (1980).Google Scholar
  14. 14.
    V. A. Kurien and M. F. Oliver, A metabolic cause for arrhythmias during acute myocardial hypoxia, Lancet, 1: 813–815 (1970).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Schwartzman, E. Liberman and A. Raz, Bradykinin and angiotensin II activation of arachidonic acid deacylation and prostaglandin E formation in rabbit kidney, J. Biol. Chem., 256: 2329–233 (1981).PubMedGoogle Scholar
  16. 16.
    K. Schr5r, Possible role of prostaglandins in the regulation of coronary blood flow, Basic Res. Cardiol., 76: 239–249 (1981).Google Scholar
  17. 1.
    L. E. Hokin and T. C. Hexum, Studies on the characterization of the (Na+ + K+) transport adenosine triphosphatase IX, On the role of phospholipids in the enzyme, Archiv. Biochem. Biophys., 151: 453–463 (1972).CrossRefGoogle Scholar
  18. 2.
    R. J. Lefkowitz, Catecholamine stimulated myocardial adenylate cyclase: effects of phospholipase digestion on the role of membrane lipids, J. Molec. Cell, Cardiol, 7: 27–37 (1975).CrossRefGoogle Scholar
  19. 3.
    B. Samuelsson, G. C. Folco, E. Granström, H. Kindahl,-and C. Malmsten, Prostaglandins and thromboxanes: Biochemical and physiological considerations, in: Advances in Prostaglandin and Thromboxane Research Vol. 4, B. Samuelsson, and R. Paoletti, Raven Press, N.Y. pp. 1–25 (1978).Google Scholar
  20. 4.
    S. Gudbjarnason, and G. óskarsdóttir, Modification of fatty acid composition of rat heart lipids by feeding cod liver oil, Biochim. Biophys. Acta 487: 10–15 (1977).Google Scholar
  21. 5.
    A. Emilsson, and S. Gudbjarnason, Changes in fatty acyl chain composition of rat heart phospholipids induced by noradrenalin, Biochim. Biophys. Acta 664: 82–88 (1981).Google Scholar
  22. 6.
    F. Hirata, and I. Axelrod, Phospholipid methylation and biological Transmission, Science 209: 1082–1090 (1980).PubMedCrossRefGoogle Scholar
  23. 7.
    S. Gudbjarnason, G. óskarsdóttir, B. Doell, and I. Hallgrímsson, Myocardial membrane lipids in relation to cardiovascular disease, Adv. in Cardiol, 25:130–144 (1978).Google Scholar
  24. 8.
    F. Z. Meerson, Disturbances of metabolism and cardiac function under the action of emotional painful stress and their prophylaxis, Basic Res. in Cardiol, 75:479–500 (1980).Google Scholar
  25. 9.
    H. P. Misra, and I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 247: 3170–3175 (1972).PubMedGoogle Scholar
  26. 10.
    R. A. Heacock, and W. S. Powell, Aminochrome and related compounds, Progr. Med. Chem., 9: 275–339 (1972).Google Scholar
  27. 11.
    R. C. Sealy, C. C. Felix, J. S. Hyde, and H. M. Schwartz, Structure and reactivity of melanins: influence of free radicals and metal ions, in: Free Radicals in Biology, Vol. IV:209–259 (1980).Google Scholar
  28. 1.
    R. J. Bing, A. Siegal, A. Vitale, F. A. Balboni, E. Sparks M. Klapper and S. Edwards, Metabolic studies on the human heart in vivo, Am. J. Med., 15: 284–296 (1953).PubMedCrossRefGoogle Scholar
  29. 2.
    L. H. Opie, Role of carnitine in fatty acid metabolism of normal and ischemic myocardium, Am. Heart, J., 97: 375–388 (1979)CrossRefGoogle Scholar
  30. 3.
    S. Gudbjarnason, G. Oskarsdottir, B. Doell and J. Hallgrimsson, Myocardial membrane lipids in relation to cardiovascular disease, Adv. in Cardiol, 25:130–144 (1978).Google Scholar
  31. 4.
    S. Gudbjarnason, The use of glycolytic metabolism in the assessment of hypoxia in human hearts, Cardiol., 57: 35–46 (1972).CrossRefGoogle Scholar
  32. 5.
    A. Lochner, J. C. N. Kotzé, L. Benade and W. Gevers, Mitochondrial oxidative phosphorylation in low-flow hypoxia, role of free fatty acids, J. Molec. Cell. Cardiol, 10: 857–875 (1978).CrossRefGoogle Scholar
  33. 6.
    S. V. Pande and M. C. Blancher, Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl Coenzyme A esters, J. Biol. Chem. 246: 402–411 (1971).PubMedGoogle Scholar
  34. 7.
    R. A. Harris, B. Farmer and T. Ozawa, Inhibition of the mitochondrial adenine nucleotide transport system by oleoyl CoA, Archiv. Biochem. Biophys., 150: 199–209 (1972).CrossRefGoogle Scholar
  35. 8.
    S. Gudbjarnason, P. Mathes and K. G. Ravens, Functional compartmentation of ATP and creatine phosphate in heart muscle, J. Molec. Cell. Cardiol, 1: 325–339 (1970).CrossRefGoogle Scholar
  36. 9.
    S. Gudbjarnason, Inhibition of energy transfer in ischemic heart muscle, in: Recent advances in studies on cardiac structure and metabolism, E. Bajusz and G. Rona, ed., University Park Press, Baltimore, 1:17–26 (1972).Google Scholar
  37. 10.
    W. Kübler and P. G. Spieckermann, Regulation of glycolysis in the ischemic and anoxic myocardium, J. Molec. Cell. Cardiol., 1: 351–377 (1970).CrossRefGoogle Scholar
  38. 11.
    A. M. Katz and H. H. Hecht, The early “pump” failure of the ischemic heart, Am. J. Med., 47: 497–502 (1969).PubMedCrossRefGoogle Scholar
  39. 12.
    W. Kübler and A. M. Katz, Mechanism of early “pump” failure of the ischemic heart: Possible role of adenosine triphosphate depletion and inorganic phosphate accumulation, Am. J. Cardiol., 40: 467–471 (1977).PubMedCrossRefGoogle Scholar
  40. 13.
    O. I. Bricknell and L. H. Opie, Glycolytic ATP and its production during ischemia in isolated Langendorff-perfused rat hearts, in: Recent advances in studies on cardiac structure and metabolism, T. Kobayashi, T. Sano and N. S. Dhalla ed., University Park Press, Baltimore, 11:505–519 (1978).Google Scholar
  41. 14.
    A. L. Shug, E. Shrago, N. Bittar, J. D. Folts and J. R. Kokes, Long chain fatty acyl CoA inhibition of adenine nucleotide translocase in the ischemic myocardium, Am. J. Physiol., 228: 689–692 (1975).PubMedGoogle Scholar
  42. 15.
    V. A. Saks, N. V. Lipina, V. N. Smiriov and E. I. Chazov, Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase, kinetic evidence, Archives Biochem. Biophys., 173: 34–41 (1976).Google Scholar
  43. 16.
    J. R. Neely, M. J. Rovetto, J. T. Whitmer and H. E. Morgan, Effects of ischemia on function and metabolism of the isolated working rat heart, Am. J. Physiol., 225: 651–658 (1973).PubMedGoogle Scholar
  44. 17.
    P. A. Poole-Wilson, Is early decline in cardiac function in ischemia due to carbon dioxide retention, Lancet, 2: 1285–1287 (1975).PubMedCrossRefGoogle Scholar
  45. 18.
    J. R. Williamson, M. L. Woodrow and A. Scarpa, Calcium binding to cardiac sarcolemma, in: Recent advances in studies on cardiac sturcture and metabolism, A. Fleckenstein, and N. S. Dhalla, ed., University Park Press, Baltimore 61–71 (1975).Google Scholar
  46. 19.
    K. G. Ravens and S. Gudbjarnason, Changes in the activities of lysosomal enzymes in infarcted canine heart muscle, Circul. Res., 24: 851–856 (1969).Google Scholar
  47. 20.
    S. Gudbjarnason, C. De Schryver, C. Chiba, J. Yamanaka, and R. J. Bing, Protein and nucleic acid synthesis during the reparative processes following myocardial infarction, Circul. Res., 15: 320–326 (1964).Google Scholar
  48. 21.
    S. Gudbjarnason, K. G. Ravens and P. Mathes, Metabolic changes in infarcted and non-infarcted myocardium during the postinfarction period, in: Recent advances in studies on cardiac structure and metabolism, E. Bajusz and G. Rona, ed., University Park Press, Baltimore, 1:439–446 (1972).Google Scholar
  49. 22.
    K. G. Ravens, S. Gudbjarnason, C. Cowan and R. J. Bing, Gamma-glutamyl-transpeptidase in myocardial infarction, Circul., 39: 693–700 (1969).Google Scholar
  50. 23.
    S. Gudbjarnason, C. Cowan, W. Braasch and R. J. Bing, Changes in enzyme pattern of infarcted heart muscle during tissue repair, Cardiologia, 51. 148–159 (1967).PubMedCrossRefGoogle Scholar
  51. 24.
    S. Gudbjarnason, C. Cowan and R. J. Bing, Increase in hexosemonophosphate shunt activity during tissue repair, Life Sciences, 6: 1093–1097 (1967).PubMedCrossRefGoogle Scholar
  52. 25.
    S. Gudbjarnason, W. Braasch, C. Cowan and R. J. Bing, Metabolism of infarcted heart muscle during tissue repair, Am. J. Cardiol., 22: 360–369 (1968).PubMedCrossRefGoogle Scholar
  53. 26.
    S. Gudbjarnason and D. Priver, LDH-isoenzymes in infarcted heart muscle, Life Sciences, 7: 623–627 (1968).PubMedCrossRefGoogle Scholar
  54. 27.
    D. M. Dawson, T. L. Goodfriend and N. O. Kaplan, Lactic dehydrogenases-functions of the two types, rates of synthesis, Science 143:929–933 (1964).Google Scholar
  55. 28.
    S. Gudbjarnason, P. S. Puri and P. Mathes, Biochemical changes in non-infarcted heart muscle following myocardial infarction, J. Molec. Cellul. Cardiol., 2: 253–276 (1971).CrossRefGoogle Scholar
  56. 29.
    E. Corday, L. Kaplan, S. Meerbaum, J. Brasch, C. Constantini, T. W. Lang, H. Gold, S. Rubins and I. Osher, Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion, Am. J. Cardiol., 36: 385–393 (1975).PubMedCrossRefGoogle Scholar
  57. 30.
    A. M. Vikhert and N. M. Cherepachenko, Changes in metabolism of undamaged sections of myocardium following infarction, Circul. Res. 34, Suppl III, 182–191, (1974).Google Scholar
  58. 31.
    H. L. Wyatt, J. S. Forrester, P. L. da Luz, G. A. Diamond, R. Chagrasulis and H. J. Swan, Functional abnormalities in nonoccluded regions of myocardium after experimental coronary occlusion, Am. J. Cardiol. 37: 366–372 (1976).PubMedCrossRefGoogle Scholar
  59. 32.
    P. Mathes and S. Gudbjarnason, Changes in norepinephrine stores in the canine heart following experimental myocardial infarction, Am. Heart J., 81: 211–219 (1971).PubMedCrossRefGoogle Scholar
  60. 33.
    P. Mathes, C. Cowan and S. Gudbjarnason, Storage and metabolism of norepinephrine after experimental myocardial infarction, Am. J. Physiol, 220: 27–32 (1971).PubMedGoogle Scholar
  61. 34.
    R. F. Klein, W. G. Troyer, H. K. Thompson, M. D. Bogdonoff and A. G. Wallace, Catecholamine excretion in myocardial infarction, Arch. Int. Med., 122: 476–482 (1968).Google Scholar
  62. 35.
    G. Baumann, Abstract 8, in: Catecholamines and the heart, recent advances in experimental and clinical research., Munich, (1981).Google Scholar
  63. 36.
    S. Gudbjarnason, J. C. Fenton, P. L. Wolf and R. J. Bing, Stimulation of reparative processes following experimental myocardial infarction, Archiv. Int. Med., 118: 34–40 (1966).Google Scholar
  64. 37a).
    L. H. Opie, Myocardial infarct size, Part 1, Basic consideratons, Am. Heart J., 100: 355–372 (1980).PubMedCrossRefGoogle Scholar
  65. 37b).
    L. H. Opie, Myocardial infarct size, Part 2, Comparison of antiinfarct effects of beta-blockade, glucose-insulin-potassium nitrates and hyaluronidase, Am. Heart J., 100: 531–550 (1980).PubMedCrossRefGoogle Scholar
  66. 38.
    P. R. Maroko and E. Braunwald, Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion, Circul. 53 Suppl. I, 162–168 (1976).Google Scholar
  67. 39.
    P. R. Maroko, R. A. Kloner, T. Yasuda, L. G. T. Ribeiro, D. Maclean and E. Braunwald, Recent investigations on attempts to limit infarct size, in: Acute and long-term management of myocardial ischemia, A. Hjalmarsson and L. Wilhelmsen, ed., A. Lindgren and Söner AB, Mölndal, Sweden, 203–220 (1978).Google Scholar
  68. 40.
    S. Gudbjarnason, W. Braasch and R. J. Bing, Protein synthesis in cardiac hypertrophy and heart failure, in: Heart failure, Pathophysiological and clinical aspects, H. Reindell, J. Keul and E. Doll, ed, George Thieme Verlag, Stuttgart, 184–189 (1968).Google Scholar
  69. 41.
    R. Robert, V. de Mello and B. E. Sobel, Deleterious effects of methylprednisolone in patients with myocardial infarction, Circul. Res. Suppl. I, 1–204 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Sigmundur Gudbjarnason
    • 1
    • 2
  • Jonas Hallgrimsson
    • 1
  • Gudrun Skuladottir
    • 1
  • A. Emilsson
    • 2
  • A. Gudmundsdottir
    • 2
  1. 1.Science Institute and Department of PathologyUniversity of IcelandReykjavikIceland
  2. 2.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations