Advertisement

Functional Aspects of Atherogenesis

  • Kenneth W. Walton
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 58)

Abstract

There is still a tendency to look upon arteries as impermeable tubes and upon ‘arterial pollution’ (atherosclerosis) as either arising from degeneration of intrinsic components of the arterial wall (1) or as due to the passive accumulation of a kind of ’sludge’ on the inner surface (thrombi deposited on the intima) which subsequently undergoes breakdown and incorporation into the wall (2). However, modern physiological and pathological evidence suggests that, instead, arteries should be considered as composed of tubes of a living and reactive gel through which blood is pumped at a pressure such that there is normally an ultrafiltration or permeation of whole plasma through the wall with its removal or drainage from the outer coats by lymphatics (3).

Keywords

Arterial Wall Atherosclerotic Lesion Functional Aspect Ground Substance Arterial Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Thoma, Über die Abhängigkeit der Hindegewebsneubildung in der Arterienintima von den mechanischen Bendingungen dis Blutumlaufes, Virch. Arch. Path. Anat. 93: 443 (1883).Google Scholar
  2. 2.
    C. von Rokitansky, A Manual of Pathological Anatomy, Vol.4, p. 261. Translated by G.E. Day, Sydenham Society, London (1852).Google Scholar
  3. 3.
    K.W. Walton, Pathogenetic Mechanisms in Atherosclerosis, Amer. J. Cardiol. 35: 542 (1975).Google Scholar
  4. 4.
    G.A. Gresham, — this volume.Google Scholar
  5. 5.
    K.W. Walton, The Biology of Atherosclerosis, in “The Biological Basis of Medicine”, E.E. Bittar and N. Bittar, eds. Vol. 6, pp. 193–233, Academic Press, New York (1969).Google Scholar
  6. 6.
    K.W. Walton. Atherosclerosis and Aging, in “Textbook of Geriatric Medicine and Gerontology”, pp. 77–112, J.C. Brocklehurst, ed. Churchill Livingstone, Edinburgh (1973).Google Scholar
  7. 7.
    K.W. Walton, Hyperlipidaemia and the Pathogenesis of Atherosclerosis, in “Perspectives in Ischaemic Heart Disease”, A.B. Simmonds, ed. pp. 55–67, Advances in Drug Research, Vol. 9, Academic Press, New York (1974).Google Scholar
  8. 8.
    K.W. Walton, P.J. Scott, J. Verrier-Jones, R.F. Fletcher and T.P. Whitehead, Studies on low-density lipoprotein turnover in relation to Atromid therapy, J. Atheroscler. Res., 3:396 (1963).PubMedGoogle Scholar
  9. 9.
    P.J. Scott and P.J. Hurley, The distribution of radioiodinated serum albumin and low-density lipoprotein in tissues and the arterial wall, Atherosclerosis, 11: 77 (1970).PubMedGoogle Scholar
  10. 10.
    H. Ott F. Lohss and J Gergely, Der Nachweis von Serumlipoprotein in der Aortenintima, Klin. Wschr., 36: 383 (1958).Google Scholar
  11. 11.
    R.E. Tracey, E.B. Merchant and V.C. Kao, On the antigenic identity of human serum beta and alpha-2 lipoproteins and their identification in the aortic intima, Circ. Res. 9:472 (1961).Google Scholar
  12. 12.
    A.N. Klimov, A.D. Denishenko and E.Y. Magracheva, Preparation of tissue fluid of the vessel wall and determination of its lipoproteins, Atherosclerosis, 19:243 (1974).PubMedGoogle Scholar
  13. 13.
    E.B. Smith and R.S. Slater, Relationship between low density lipoprotein in aortic intima and serum lipid levels, Lancet 1:463 (1972).PubMedGoogle Scholar
  14. 14.
    H.F. Hoff, C.L. Heideman, J.W. Gaubatz, A.M. Gotto, E.E. Erikson and R.L. Jackson, Quantification of apolipoprotein B in grossly normal human aorta, Circ. Res., 40:56 (1977).Google Scholar
  15. 15.
    K.W. Walton and G.V.H. Bradby. The significance of ‘bound’ and ’labile’ fractions of low-density lipoprotein and fibrinogen in the arterial wall, in “Atherosclerosis - Metabolic, Morphologic and Clinical Aspects”, pp.888–893, G.M. Manning and M.D. Haust, eds., Plenum Press, New York (1975).Google Scholar
  16. 16.
    H.F. Hoff, C.L. Heideman, J.W. Gaubatz and A.M. Gotto, Quantitation of apoB in human aortic fatty streaks — A comparison with grossly normal intima and fibrous plaques, Atherosclerosis, 30:263 (1978).PubMedGoogle Scholar
  17. 17.
    G.V.H. Bradby, K.W. Walton and R. Watts, The binding of total low-density lipoproteins in human arterial intima affected and unaffected by atherosclerosis, Atherosclerosis, 32:403 (1979).PubMedGoogle Scholar
  18. 18.
    V.C.Y. Kao and R.W. Wissler, A study of the immunohistochemical localization of serum lipoproteins and other plasma proteins in human atherosclerotic lesions, Exp. Mol. Pathol., 4:465 (1965).Google Scholar
  19. 19.
    K.W. Walton and N. Williamson, Histological and immunofluorescent studies on the evolution of the human atheromatous plaque, J. Atheroscler. Res. 8:599 (1968).PubMedGoogle Scholar
  20. 20.
    H.F. Hoff, J.T. Lie, R.L. Jackson, M.E. DeBakey, R.J. Bayards and A.M. Gotto, Localization of apo-low-density lipoproteins (apo-LDL) in atherosclerotic lesions of human normo - and hyperlipemics, Arch. Path., 99:253 (1975).Google Scholar
  21. 21.
    H.F. Hoff and J.W. Gaubatz, Ultrastructural localization of apolipoprotein B in human aortic and coronary atherosclerotic plaques, Exp. Mol. Pathol. 26:214 (1977).Google Scholar
  22. 22.
    K.W. Walton and C.J. Morris, Studies on the passage of plasma proteins across arterial endothelium in relation to atherogenesis, Progr. Biochem. Pharmacol., 13:138 (1977).Google Scholar
  23. 23.
    E.B. Smith, I.B. Massie and K.M. Alexander, The release of an immobilised lipoprotein fraction from atherosclerotic lesions by incubation with plasmin, Atherosclerosis, 25:71 (1976).PubMedGoogle Scholar
  24. 24.
    G.J. Miller and N.E. Miller Plasma high density lipoprotein concentration and development of ischaemic heart disease Lancet 1:16 (1975).PubMedGoogle Scholar
  25. 25.
    S. Rössner, K.G. Kjellin, K.L Mettinger, A. Siden and S.E. Söderstrem. Dislipoproteinemia in patients with ischaemic cerebrovascular disease, Atherosclerosis, 30:199 (1978).PubMedGoogle Scholar
  26. 26.
    G.V.H. Bradby, A.J. Valente and K.W. Walton, Serum high density lipoproteins in peripheral vascular disease, Lancet, 2:1271 (1978).PubMedGoogle Scholar
  27. 27.
    G. Heiss, N.J. Johnson, S. Reiland, C.E. Davis and H.A. Tyroler, The epidemiology of plasma high-density lipoprotein cholesterol levels, Circulation 62 (suppl IV:116 (1980).Google Scholar
  28. 28.
    R.I. Levy and B.M. Rifkind. The structure, function and metabolism of high-density lipoproteins: A status report, Circulation 62 (Suppl. IV): 4 (1980).Google Scholar
  29. 29.
    J.B. Duguid, The thrombogenic hypothesis and its implications, Postgrad. Med. J. 36:226 (1969)Google Scholar
  30. 30.
    M. Seligmann, B. Goudemaud, A. Janin, B. Bernard and P. Grabar, Etudes immunochimiques sur la presence de fibrinogene dans des extraits de plaquettes humaines lavéeset dans certains extraits leucocytaires, Rev. hémat., 12:302 (1957).PubMedGoogle Scholar
  31. 31.
    E.F. Plow, C. Birdwell and M.H. Ginsberg, Identification and quantitation of platelet-associated fibronectin antigen, J. Clin. Invest., 63:540 (1979).PubMedGoogle Scholar
  32. 32.
    P. Wolf, The nature and significance of platelet products in human plasma, Brit. J. Haematol., 13:269 (1967).Google Scholar
  33. 33.
    K.C. Carstairs, The identification of platelets and platelet antigens in histological sections, J. Pathol. Bact. 90:225 (1965).Google Scholar
  34. 34.
    E.B. Smith, in “Atherosclerosis: Proceedings of the Second International Symposium”, R.J. Jones, ed., p.106, Springer Verlag, Berlin.Google Scholar
  35. 35.
    E.B. Smith, Quantitative and qualitative comparison of the lipids in platelets, aortic intima and mural thrombi, Cardiovasc. Res., 1:111 (1967).Google Scholar
  36. 36.
    E.B. Smith, R.S. Slater and J.A. Hunter, Quantitative studies on fibrinogen and low-density lipoprotein in human aortic intima, Atherosclerosis, 18:479 (1973).PubMedGoogle Scholar
  37. 37.
    E.B. Smith, Haemostatic factors in human aortic intima, Lancet, I:1171 (1981).Google Scholar
  38. 38.
    S. Stenman and A. Vaheri, Distribution of a major connective tissue protein, fibronectin, in normal human tissues, J. Exp. Med., 147:1054 (1978).PubMedGoogle Scholar
  39. 39.
    M.W Mosesson, Structure of human plasma cold-insoluble globulin and the mechanism of its precipitation in the cold with heparin or fibrin-fibrinogen complexes, Ann. N.Y. Acad.Sci. 312:11 (1978).Google Scholar
  40. 40.
    J.T. Edsall, G.A. Gilbert and H.A. Scheraga, The non-clotting component of the human plasma fraction I-1 (’cold insoluble globulin’), J. Amer. Chem. Soc. 77:157 (1955).Google Scholar
  41. 41.
    K.M. Yamada and K. Olden, Fibronectins - adhesive glycoproteins of cell surface and blood, Nature 275:179 (1978).PubMedGoogle Scholar
  42. 42.
    D.L. Scott, A.C. Wainwright, K.W. Walton and N. Williamson Significance of fibronectin in rheumatoid arthritis and osteoarthritis, Ann. Rheum. Dis. 40:142 (1981).PubMedGoogle Scholar
  43. 43.
    K.W. Walton and D.L. Scott, The role of fibronectin in the progression of human atherosclerotic plaques, - in preparation.Google Scholar
  44. 44.
    W.H. Hauss, U. Gerlach, G. Junge-Hülsing, H. Themann and W. Wirth, Studies on the ‘non-specific mesenchymal reaction’ and the ’transit zone’ in myocardial lesions and atherosclerosis, Ann. N.Y. Acad. Sci., 156:207 (1969).PubMedGoogle Scholar
  45. 45.
    M.D. Haust, R.H. More and H.Z. Movat, The mechanism of fibrosis in arteriosclerosis, Amer. J. Pathol., 35:265 (1959)Google Scholar
  46. 46.
    T. Schaffner, K. Taylor, E.J. Bartucci, K. Fischer-Dzoga, J.H. Beeson, S. Glagov and R.W. Wissler, Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages, Amer. J. Pathol., 100:57 (1980).Google Scholar
  47. 47.
    J.W. Gofman and W. Young, The filtration concept of atherosclerosis and serum lipids in the diagnosis of atherosclerosis, in “Atherosclerosis and its origin” pp. 197–229, M. Sandler and G.H. Bourne, eds. Academic Press, New York (1963).Google Scholar
  48. 48.
    S.L. Wilens and R.T. McCluskey, The permeability of excised arteries and other tissues to serum lipid, Circ. Res., 2:175 (1954).Google Scholar
  49. 49.
    C.W.M. Adams, 0.B. Bayliss and M.Z.M. Ibrahim, A hypothesis to explain the accumulation of cholesterol in atherosclerosis, Lancet, 1:890 (1962).PubMedGoogle Scholar
  50. 50.
    N. Woolf and T. Crawford, Fatty streaks in the aortic intima studied by an immunohistochemical technique, J. Pathol. Bact., 80:405 (1960).Google Scholar
  51. 51.
    K.W. Walton, The role of serum lipoproteins in very early and late atherosclerotic lesions, in “Connective Tissue and Ageing”, H. Vogel, ed., pp. 34–37, Excerpta Medica, Amsterdam (1973).Google Scholar
  52. 52.
    K.W. Walton, N.Williamson and A.G. Johnson, The pathogenesis of atherosclerosis of the mitral and aortic valves, J. Pathol., 101:205 (1970).PubMedGoogle Scholar
  53. 53.
    S. Gerd, J. Gergely, T. Devenyi, L. Jakab, J. Szekely and S. Virag. Role of mucoid substances of the aorta in the deposition of lipids, Nature, 187:152 (1960).Google Scholar
  54. 54.
    K.W. Walton, The biological properties of a new anticoagulant possessing heparin-like properties, Brit. J. Pharmacol. 7:370 (1952).Google Scholar
  55. 55.
    K.W. Walton and P.J. Scott, Estimation of the low-density (ß, lipoproteins of serum in health and disease using large molecular weight dextran sulphate, J. Clin. Path., 17:627 (1964).PubMedGoogle Scholar
  56. 56.
    A.J. Anderson, The formation of chondromucoprotein - fibrinogen and chondromucoprotein - ß - lipoprotein complexes. Biochem. J., 88:460 (1963).PubMedGoogle Scholar
  57. 57.
    J.S. Amenta and L.L. Waters, The precipitation of serum lipoproteins by mucopolysaccharides extracted from aortic tissue, Yale J. Biol. Med. 33:112 (1960).Google Scholar
  58. 58.
    R.C. Curran and W.A.J. Crane, Mucopolysaccharides in the atheromatous aorta, J. Pathol. Bact., 84:405 (1962).Google Scholar
  59. 59.
    H.D. Moon and J.F. Rinehart, Histogenesis of coronary arteriosclerosis, Circulation, 6:481 (1952).PubMedGoogle Scholar
  60. 60.
    M.D. Haust, The morphogenesis and fate of potential and early atherosclerotic lesions in man, Human Pathol., 2:1 (1971).Google Scholar
  61. 61.
    W.H. Hauss, G. Junge-Hülsing and H.J. Hollander, Changes in the metabolism of connective tissue associated with ageing and arterio - or atherosclerosis, J. Atheroscler. Res., 2:50 (1962).PubMedGoogle Scholar
  62. 62.
    E.B. Smith, P.H. Evans and M.D. Downham, Lipid in the aortic intima: the correlation of morphological and chemical characteristics, J. Atheroscler. Rec., 7:171 (1967).Google Scholar
  63. 63.
    C.J. Morris, G.V.H. Bradby and K.W. Walton, Fibrous long-spacing collagen in human atherosclerosis, 31:345 (1978).Google Scholar
  64. 64.
    J. Larrue, D. Daret, J. Demond and H. Bricaud. Fibrous long spacing collagen in aortic explants of normal rabbit cultured in hypercholesterolaemic serum. Atherosclerosis, 28:53 (1977).PubMedGoogle Scholar
  65. 65.
    B.B. Doyle, D.W.L. Hukins, D.J.S. Hulme, A. Miller and J. Woohead-Galloway, Collagen polymorphism - Its origin in the amino-acid sequence, J. Molec. Biol., 91:79 (1975).PubMedGoogle Scholar
  66. 66.
    J.L. Goldstein and M.S. Brown, The LDL pathway in human fibroblasts: a receptor-mediated mechanism for the regulation of cholesterol metabolism, in “Current Topics in Cellular Regulation”, B.L Horecker and E.R. Stadtman, eds. pp. 147–181, Academic Press, New York.Google Scholar
  67. 67.
    R.W. Mahley, T.L. Innerarity, K.H. Weisgraber and S.K. Oh, Altered metabolism (In vivo and in vitro) of plasma lipoproteins after selective chemical modification of lysine residues of the apoproteins, J. Clin. Invest., 64:743 (1979).PubMedGoogle Scholar
  68. 68.
    Goldstein, Y.K. Ho, M.S. Brown, T.L. Innerarity and R.W. Mahley, Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine 6-very low density lipoproteins, J. Biol. Chem., 255:1839 (1980).PubMedGoogle Scholar
  69. 69.
    G.W. Pickering, Pathogenesis of myocardial and cerebral infarction: nodular arteriosclerosis, Brit. Med. J., 1:517 (1964).PubMedGoogle Scholar
  70. 70.
    G. de Backer - this volume.Google Scholar
  71. 71.
    S. Cohen, T. Freeman and A.S. McFarlane, Metabolism of 131I-labelled human albumin. Clin. Sci., 20:161 (1961).Google Scholar
  72. 72.
    P.J. Scott, P.W. Dykes, J. Davis and K.W. Walton, Turnover studies of 131I-labelled 6-lipoprotein in health and in thyroid disease in “Biochemical Problems of Lipids”, A.C. Fraser. ed., pp. 318–324, Elsevier, Amsterdam, (1963).Google Scholar
  73. 73.
    P.J. Hurley abd P.J. Scott, Plasma turnover of S 0–9 low-density lipoprotein in normal men and women. Atherosclerosis, 11:51 (1970).Google Scholar
  74. 74.
    P. Constantinides and M. Robinson, Ultra-structural injury of arterial endothelium, Arch. Pathol., 88:99;106;113 (1969).Google Scholar
  75. 75.
    H.M. Turnbull, Alterations in arterial structure and their relation to syphilis, Q. J. Med., 8:201 (1915).Google Scholar
  76. 76.
    R.S. Ross and V.A. McKusick, Aortic arch syndromes, Arch. Intern. Med., 92:701 (1953).Google Scholar
  77. 77.
    D. Steinberg, Lipoprotein structure and metabolism: Inhomogeneity, variability and species specificity, in “Atherosclerosis V”, A.M. Gotto, L.C. Smith and B. Allen, eds. pp. 616–623, Springer Verlag, New York (1979).Google Scholar
  78. 78.
    D. Steinberg, R.C. Pittman, A.D. Attie, T.E. Carew, S. Pangbourn and D. Weinstein, The role of the liver in LDL catabolism in “Atherosclerosis V” A.M. Gotto, L.C. Smith and B. Allen, eds. pp. 800–803 Springer Verlag, New York (1979).Google Scholar
  79. 79.
    C.J. Packard, S. Bicker, H.G. Morgan, T.D.Y. Lawrie and J. Shepherd, Receptor dependent low density lipoprotein catabolism in normal and familial hypercholesterolemic subjects, in “Proceedings of Vth International Symposium on Atherosclerosis”, Houston, Texas, November 1979, Abstract No. 202.Google Scholar
  80. 80.
    R.W. Mahley, Dietary fat, cholesterol and accelerated atherosclerosis, in “Atherosclerosis Reviews”, R. Paoletti and A.M. Gotto, eds. Vol. 5, pp. 1–34, Raven Press, New York (1979).Google Scholar
  81. 81.
    J.L. Beaumont, L.A. Carlson, G.R. Cooper, Z. Fejfar, D.S. Fredrickson and T. Strasser, Classification of hyperlipidaemias and hyperlipoproteinaemias, Bull, Wld. Hlth. Org. 43:891 (1970).Google Scholar
  82. 82.
    K.W. Walton, The metabolism of low-density (ß) lipoproteins in health and disease, in “Physiology and pathophysiology of Protein Metabolism”, G. Birke, R. Norburg and L.O. Plantin, pp. 145–148, Pergamon Press, Oxford (1969).Google Scholar
  83. 83.
    A.K. Khachadurian, The inheritence of essential familial hypercholesterolaemia, Amer. J. Med., 37:402 (1964).PubMedGoogle Scholar
  84. 84.
    D.B. Zilversmit, A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceriderich lipoproteins, Circ. Res. 33:633 (1973).PubMedGoogle Scholar
  85. 85.
    J. Slack, Risks of ischaemic heart disease in familial hyperlipoproteinaemic states, Lancet, 2:1380 (1969).PubMedGoogle Scholar
  86. 86.
    K.W. Walton, Identification of lipoproteins involved in human atherosclerosis, in Atherosclerosis III, G. Shettler and A Weizel, eds. pp. 93–95, Springer Verlag, Berlin, (1974).Google Scholar
  87. 87.
    K.W. Walton, J. Hitchens, H.N. Magnani and M. Khan, A study of methods of identification of Lp (a) lipoprotein and of its significance in health, hyperlipidaemia and atherosclerosis, Atherosclerosis, 20:323 (1974).PubMedGoogle Scholar
  88. 88.
    E. Grosjek and S.M. Grundy, Electron microscopic evidence for particles smaller than 250 Ao in very low density lipoproteins of human plasma, Atherosclerosis, 31:241 (1978).Google Scholar
  89. 89.
    C.J. Morris, H.N. Magnani, K.W. Walton and A.J. Valente, Variation in particle size of human and intermediate density lipoproteins in health and in hyperlipidaemias: An electron microscope study, in preparation.Google Scholar
  90. 90.
    B. Lewis, A Chait, I.D.P. Wootton, C.M. Oakley, D.M. Krikler, G. Sigurdsson, A. February, B, Maurer and J. Birkhead, Frequency of risk factors for ischaemic heart disease in a healthy British population, Lancet, 1:141 (1974).PubMedGoogle Scholar
  91. 91.
    K.W. Walton, Studies on the pathogenesis of corneal arcus formation. I. Corneal arcus formation in the human and its relation to atherosclerosis as studied by immunofluorescence. J. Pathol. 111:263 (1973).PubMedGoogle Scholar
  92. 92.
    P. Constantinides, Lipid deposition in injured arteries, Arch. Pathol. 85:280 (1968).Google Scholar
  93. 93.
    P.J. Scott and C.C. Winterbourn, Low density lipoprotein accumulation in actively growing xanthomas. J. Atheroscler. Res., 7:207 (1967).PubMedGoogle Scholar
  94. 94.
    W.E. Mall and S. Chinn, Blood pressure and ageing: results of a 15–17 year follow-up study in South Wales, Clin. Sci. Mol. Med., 45:suppl 1, 23S (1973).Google Scholar
  95. 95.
    K.W. Walton, Models for the study of tissue deposition and synthesis of lipoproteins, in “The Lipoprotein Molecule ”, H. Peeters, ed. pp. 255–260, Plenum Press, New York (1978).Google Scholar
  96. 96.
    T.R. Dawber, W.B. Kannel, N. Revotskie and A. Kagan, The epidemiology of coronary heart disease - the Framingham enquiry, Proc. R. Soc. Med. 55:265 (1962).PubMedGoogle Scholar
  97. 97.
    A. Keys, C. Aravanis, H. Blackburn, F.S.P. van Buchem, R. Buzina, B.S. Djordevic, F. Fidanza, M.J. Karvonen, A. Menotti, V. Puddu and H.L. Taylor, Probability of middle-aged men developing coronary heart disease in five years, Circulation, 45:815 (1972).PubMedGoogle Scholar
  98. 98.
    K.W. Walton, C. Thomas and D.J. Dunkerley, The pathogenesis of cutaneous xanthomata, J. Pathol. 109:271 (1973).PubMedGoogle Scholar
  99. 99.
    G. Camejo, V. Bosch. C. Arreaza and H.C. Mendis, Early changes in lipoprotein structure and biosynthesis in cholesterol-fed rabbits. J. Lipid Res. 14:61 (1973).PubMedGoogle Scholar
  100. 100.
    G. Camejo, V. Bosch and A Lopez, The very low density lipoproteins of cholesterol-fed rabbits - A study of their structure and in vivo changes in plasma, Atherosclerosis, 19:139 (1974).PubMedGoogle Scholar
  101. 101.
    B. Shore and V. Shore, Rabbits as a model for the study of hyperlipoproteinaemia and atherosclerosis, Adv. Exp. Biol. Med., 67:123 (1976).Google Scholar
  102. 102.
    K.W. Walton, G.V.H. Bradby and C.J. Morris, Intestinal biosynthesis of human serum lipoproteins, in “International Conference on Atherosclerosis, L.A. Carlson, R. Paoletti, C.R. Sirtori and G. Weber, eds. pp. 303–310, Raven Press, New York (1978).Google Scholar
  103. 103.
    R. H Hamilton, Synthesis and secretion of plasma lipoproteins, Adv. Exp. Biol. Med., 26:7 (1972).Google Scholar
  104. 104.
    K. W. Walton and D.J. Dunkerley, Studies on the pathogenesis of corneal arcus formation, II, Immunofluorescent studies on lipid deposition in the eye of the lipid-fed rabbit, J. Pathol., 114:217 (1974).PubMedGoogle Scholar
  105. 105.
    K.W. Walton, D.J. Dunkerley, A.G. Johnson, M.K. Khan, C. Morris and R.B. Watts, Investigation by immunofluorescence of arterial lesions in rabbits on two different lipid supplements and treated with pyridinol carbamate, Atherosclerosis, 23:117 (1976).PubMedGoogle Scholar
  106. 106.
    K.W. Walton, Atherosclerosis of heart valves and the formation of the corneal arcus as models for the study of atherosclerosis, Nutr. Metab., 15:37 (1973).PubMedGoogle Scholar
  107. 107.
    N. Anitschkow, Experimental arteriosclerosis in animals, in “Arteriosclerosis”, E.V. Cowdry ed, pp. 271–322, Macmillan, New York (1933).Google Scholar
  108. 108.
    R.F. Scott, A.S. Daoud and R.A. Florentin, Animal models in Atherosclerosis, in “The Pathogenesis of Atherosclerosis”, R.W. Wissler and J.C. Gear, pp. 120–146, Williams and Wilkins Co., Baltimore, (1972).Google Scholar
  109. 109.
    D. Vesselinovitch, Animal models of atherosclerosis, their contributions and pitfalls, Artery, 5:193 (1979).PubMedGoogle Scholar
  110. 110.
    E.B. Smith, Molecular interactions in human atherosclerotic plaques, Amer. J. Path., 86:665 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Kenneth W. Walton
    • 1
  1. 1.Department of Investigative Pathology Medical SchoolUniversity of BirminghamBirmingham 15England

Personalised recommendations