Subcellular Localization of Simian Virus 40 T-Antigen

  • Wolfgang Deppert
  • Matthias Staufenbiel
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 57)


The outcome of an infection of tissue culture cells with the small DNA tumor virus simian virus 40 (SV40) depends on the type of cell used in such an experiment: (i) infection of permissive cells (epithelial monkey cells) will lead to production of progeny virus, resulting in cell lysis; (ii) infection of non-permissive or semi-permissive cells (e. g. mouse or human cells), however, may lead to integration of at least part of the viral genome and an alteration of these cells from a “normal” to a “transformed” phenotvpe. Both events, viral replication and viral transformation, are initiated, maintained and regulated by the expression of an early SV40 gene, the SV40 A gene.


Nuclear Matrix Simian Virus Monkey Cell Cold Spring Harbor Symposium Hybrid Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Tooze, “Molecular Biology of Tumor viruses”, Part 2, DNA Tumor Viruses, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980).Google Scholar
  2. 2.
    R. Weil, Viral “tumor antigens”. A novel type of mammalian regulator proteins. Biochim. Biophys. Acta 516: 301 (1978).Google Scholar
  3. 3.
    P. Tegtmeyer, K. Rundell and J. K. Collins. Modification of simian virus 40 protein A. J. Virol. 21: 647 (1977).Google Scholar
  4. 4.
    K. Rundell, J. K. Collins, P. Tegtmeyer, H. L. Ozer, C. J. Lai and D. Nathans. Identification of simian virus 40 protein A. J. Virol. 21: 636 (1977).Google Scholar
  5. 5.
    G. Walter and P. J. Flory, Jr. Phosphorylation of SV40 large T-antigen, in “Cold Spring Harbor Symposia on Quantitative Biology” Vol. XLIV, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980).Google Scholar
  6. 6.
    N. Goldman, M. Brown and G. Khoury. Modification of SV40 T-antigen by poly ADP-ribosylation. Cell 24: 567 (1981).CrossRefGoogle Scholar
  7. 7.
    D. P. Lane and L. V. Crawford. T-antigen is bound to a host protein in SV40 transformed cells. Nature 278: 261 (1979).CrossRefGoogle Scholar
  8. 8.
    D. I. H. Linzer and A. J. Levine. Characterization of a 54 K cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43 (1979).CrossRefGoogle Scholar
  9. 9.
    M. Montenarh and R. Henning. Simian virus 40 T-antigen phosphorylation is variable. FEBS Lett. 114: 107 (1980).CrossRefGoogle Scholar
  10. 10.
    E. Fanning, B. Nowak and C. Burger. Detection and characterization of multiple forms of simian virus 40 large T-antigen. J. Virol. 37: 92 (1981).Google Scholar
  11. 11.
    D. S. Greenspan and R. B. Carroll. Complex of simian virus 40 large tumor antigen and 48 000-dalton host tumor antigen. Proc. Natl. Acad. Sci. U.S.A. 78: 105 (1981).CrossRefGoogle Scholar
  12. 12.
    G. Khoury and E. May. Regulation of early and late simian virus 40 transcription: overproduction of early viral RNA in the absence of a functional T-antigen. J. Virol. 23: 167 (1977).Google Scholar
  13. 13.
    D. Rio, A. Robbins, R. Myers and R. Tijan. Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. Proc. Natl. Acad. Sci. U.S.A. 77: 5706 (1980).CrossRefGoogle Scholar
  14. 14.
    R. Mc Kay and D. Di Maio. Binding of an SV40 T-antigen-related protein to the DNA of SV40 regulatory mutants. Nature 289: 810 (1981).CrossRefGoogle Scholar
  15. 15.
    D. Jessel, T. Landau, J. Hudson, T. Lalor, D. Tenen and D. M. Livingston. Identification of regions of the SV40 genome which contain preferred SV40 T-antigen-binding sites. Cell 8: 535 (1976).CrossRefGoogle Scholar
  16. 16.
    R. Tijan. The binding site on SV40 DNA for a T-antigen related protein. Cell 13: 165 (1978).CrossRefGoogle Scholar
  17. 17.
    C. Prives, Y. Beck, D. Gidoni, M. Oren and H. Shure. DNA binding and sedimentation properties of SV40 T-antigens synthesized in vivo and in vitro, in “Cold Spring Harbor Symposia on Quantitative Biology XLIV”, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980).Google Scholar
  18. 18.
    M. Persico-di Lauro, R. G. Martin and D. M. Livingston. Interaction of simian virus 40 chromatin with simian virus 40 T-antigen. J. Virol. 27: 451 (1977).Google Scholar
  19. 19.
    J. Reiser, J. Renart, L. V. Crawford and G. E. Stark. Specific association of simian virus 40 tumor antigen with simian virus 40 chromatin. J. Virol. 33: 78 (1980).Google Scholar
  20. 20.
    J. W. Pope and W. P. Rowe. Detection of specific antigens in SV40 transformed cells by immunofluorescence. J. Exp. Med. 120: 121 (1964).CrossRefGoogle Scholar
  21. 21.
    C. Chang, R. G. Martin, D. M. Livingston, S. W. Luborsky, C. P. Hu and P. T. Mora. Relationship between T-antigen and tumor-specific transplantation antigen in simian virus 40 transformed cells. J. Virol. 29: 69 (1979).Google Scholar
  22. 22.
    W. Deppert, K. Hanke and R. Henning. Simian virus 40 T-antigen-related cell surface antigen: serological demonstration on simian virus 40-transformed monolayer cells in situ. J. Virol. 35: 505 (1980).Google Scholar
  23. 23.
    W. Deppert. SV40 T-antigen-related surface antigen: correlated expression in cells transformed by an SV40 A-gene mutant. Virology 104: 497 (1980).CrossRefGoogle Scholar
  24. 24.
    W. Deppert, G. Walter and H. Linke. Simian virus 40 tumor-specific proteins: subcellular distribution and metabolic stability in HeLa cells infected with nondefective adeno-virus type 2 — simian virus 40 hybrid viruses. J. Virol. 21: 1170 (1977).Google Scholar
  25. 25.
    L. V. Crawford, C. N. Cole, A. E. Smith, E. Paucha, P. Tegtmeyer, K. Rundell and P. Berg. Organization and expression of early genes of simian virus 40. Proc. Natl. Acad. Sci. U.S.A. 75: 117 (1978).CrossRefGoogle Scholar
  26. 26.
    G. Walter, K. H. Scheidtmann, A. Carbonne, A. P. Laudano and R. F. Doolittle. Antibodies specific for the carboxy- and amino-terminal region of simian virus 40 large tumor anti-gen. Proc. Natl. Acad. Sci. U.S.A. 77: 5197 (1980).CrossRefGoogle Scholar
  27. 27.
    K. Mann, T. Hunter, G. Walter and H. Linke. Evidence for simian virus 40 (SV40) coding of SV40 T-antigen and the SV40-specific proteins in HeLa cells infected with nonde-fective adenovirus type 2 — SV40 hybrid viruses. J. Virol. 24: 151 (1977).Google Scholar
  28. 28.
    G. Jay, F. T. Jay, C. Chang, R. M. Friedman and A. S. Levine. Tumor-specific transplantation antigen: use of the Ad2+ND1 hybrid virus to identify the protein responsible for simian virus 40 tumor rejection and its genetic origin. Proc. Natl. Acad. Sci. U.S.A. 75: 3055 (1978).CrossRefGoogle Scholar
  29. 29.
    A. M. Lewis, Jr. and W. P. Rowe. Studies on nondefective adenovirus — simian virus 40 hybrid viruses. I. A newly characterized simian virus 40 antigen induced by the Ad2+ND1 virus. J. Virol. 7: 189 (1971).Google Scholar
  30. 30.
    S. G. Baum, M. S. Horwitz and J. V. Maizel, Jr. Studies on the mechanism of enhancement of human adenovirus infection in monkey cells by simian virus 40. J. Virol. 10: 211 (1972).Google Scholar
  31. 31.
    D. F. Klessig and L. T. Chow. Incomplete splicing and deficient accumulation of the fiber messenger RNA in monkey cells infected by human adenovirus type 2. J. Mol. Biol. 139: 221 (1980).CrossRefGoogle Scholar
  32. 32.
    Y. Aloni. Splicing of mRNAs. Progr. Nucl. Ac. Res. 25: 1 (1981).CrossRefGoogle Scholar
  33. 33.
    R. Lopez-Revilla and G. Walter. Polypeptide specific for cells infected with adenovirus 2-SV40 hybrid Ad2+ND1. Nature (London) New Biol. 244: 165 (1973).Google Scholar
  34. 34.
    W. Deppert. Simian virus 40 (SV40)-specific proteins associated with the nuclear matrix isolated from adenovirus type 2 — SV40 hybrid virus-infected HeLa cells carry SV40 U-antigen determinants. J. Virol. 26: 165 (1978).Google Scholar
  35. 35.
    W. Deppert and R. Pates. Cell surface location of simian virus 40-specific proteins on HeLa cells infected with adenovirus type 2 — simian virus 40 hybrid viruses Ad2 ND1 and Ad2+ND2. J. Virol. 31: 522 (1979).Google Scholar
  36. 36.
    M. Schwyzer. Purification of SV40 T—antigen by immuno-affinity chromatography on staphylococcal protein A-sepharose. Colloq. INSERM 69: 63 (1977).Google Scholar
  37. 37.
    P. H. Henry, L. E. Schnipper, R. J. Samaha, C. S. Crumpacker, A. M. Lewis, Jr. and A. S. Levine. Studies of nondefective adenovirus 2 — simian virus 40 hybrids. VI. Characterization of the DNA from five non-defective hybrid viruses. J. Virol. 11: 665 (1973).Google Scholar
  38. 38.
    J. F. Morrow, P. Berg, T. J. Kelly, Jr. and A. M. Lewis, Jr. Mapping of simian virus 40 early functions on the viral chromosome. J. Virol. 12: 653 (1973).Google Scholar
  39. 39.
    H. Westphal, S. P. Lai, C. Lawrence, T. Hunter and G. Walter. Mosaic adenovirus 2 — SV40 DNA specified by the non-defective hybrid virus Ad2+ND4. J. Mol. Biol. 130: 337 (1979).CrossRefGoogle Scholar
  40. 40.
    V. B. Reddy, P. K. Ghosh, P. Lebowitz, M. Piatak and S. M. Weissman. Simian virus 40 early mRNA’s. I. Genomic localization of 31 and 5f termini and two major splices in mRNA from transformed and lytically infected cells. J. Virol. 30: 279 (1979).Google Scholar
  41. 41.
    G. Walter and H. Martin. Simian virus 40-specific proteins in HeLa cells infected with nondefective adenovirus 2 — simian virus 40 hybrid viruses.Google Scholar
  42. 42.
    J. Avruch and D. F. Hoelzl Wallach. Preparation and properties of plasma membrane and endoplasmic reticulum fragments isolated from rat fat cells. Biochim. Biophys. Acta 233: 334 (1971).CrossRefGoogle Scholar
  43. 43.
    A. B. Fulton, K. M. Wan and S. Penman. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell 20: 849 (1980).CrossRefGoogle Scholar
  44. 44.
    S. Penman. RNA metabol ism in the HeLa cell nucleus. J. Mol. Biol. 17: 117 (1966).CrossRefGoogle Scholar
  45. 45.
    R. Berezney and D. S. Coffey. The nuclear protein matrix: isolation, structure and functions. Adv. Enzyme Regul. 14: 63 (1976).CrossRefGoogle Scholar
  46. 46.
    M. Staufenbiel and W. Deppert. Intermediate filament systems are collapsed onto the nuclear surface after isolation of nuclei from tissue culture cells. Exp. Cell Res., in press (1982).Google Scholar
  47. 47.
    K. Weber, R. Pollack and T. Bibring. Antibody against tumulin: the specific visualization of cytoplasmic microtubules in tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 72: 459 (1975).CrossRefGoogle Scholar
  48. 48.
    E. Lazarides and K. Weber. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc. Natl. Acad. Sci. U.S.A. 71: 2268 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Wolfgang Deppert
    • 1
  • Matthias Staufenbiel
    • 1
  1. 1.Dept. of BiochemistryUniversity of UlmUlmFederal Republic of Germany

Personalised recommendations