The Cloning and Analyses of Human Cellular Genes Homologous to Retroviral Onc Genes

  • Flossie Wong-Staal
  • Eric Westin
  • Genoveffa Franchini
  • Edward Gelmann
  • Riccardo Dalla Favera
  • Vittorio Manzari
  • Robert C. Gallo
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 57)


Type-C retroviruses are associated with certain forms of naturally occurring leukemias and lymphomas of many species, including humans, as recently evidenced. These viruses generally do not transform cells directly in vitro and apparently do not contain a specific transforming gene. In contrast, a more unusual class of retroviruses is the acutely transforming viruses1,2. They cause diseases rapidly in vivo, have the capacity to transform appropriate target cells in vitro, and contain genomes which are usually defective for replication and include a specific transforming (v-onc) gene.


Long Terminal Repeat Cellular Gene Rous Sarcoma Virus Woolly Monkey Human Hematopoietic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Bishop, Retroviruses, Ann. Rev. Biochem. 47: 35 (1978).CrossRefGoogle Scholar
  2. 2.
    P. H. Duesberg, Transforming genes of retroviruses, in: “Cold Spring Harbor Symposium Quant. Biol.”, 44:13 (1979).Google Scholar
  3. 3.
    E. P. Gelmann, F. Wong-Staal, R. A. Kramer and R. C. Gallo, Molecular cloning and comparative analyses of the genomes of simian sarcoma virus (SSV) and its helper associated virus (SSAV), Proc. Natl. Acad. Sci. USA 78: 3373 (1981).CrossRefGoogle Scholar
  4. 4.
    C. J. Sherr, L. A. Fedele, M. Oskarsson, J. Maizel and G. Vande Woude, Molecular cloning of Snyder-Theilen feline leukemia and sarcoma viruses: Comparative studies of feline sarcoma virus with its natural helper virus and with Moloney murine sarcoma virus, J. Virol. 34: 200 (1980).Google Scholar
  5. 5.
    E. P. Gelmann, L. Petri, A. Cetta and F. Wong-Staal, Specific regions of the genome of simian sarcoma associated virus are deleted in defective genomes and in SSV, J. Virol, (in press).Google Scholar
  6. 6.
    K. C. Robbins, S. G. Devare and S. A. Aaronson, Molecular cloning of integrated simian sarcoma virus: Genome organization of infectious DNA clones, Proc. Natl. Acad. Sci. USA 78: 2918 (1981).CrossRefGoogle Scholar
  7. 7.
    F. Wong-Staal, R. Dalla Favera, E. Gelmann, V. Manzari, S. Szala, S. Josephs and R. C. Gallo, The transforming gene of simian sarcoma virus (sis): A new onc gene of primate origin, Nature (in press).Google Scholar
  8. 8.
    R. C. Gallo and F. Wong-Staal, Molecular biology of primate retroviruses, in: “Viral Oncology”, G. Klein, ed., Raven Press, N.Y. (1980).Google Scholar
  9. 9.
    F. Wong-Staal, R. Dalla Favera, G. Franchini, E. P. Gelmann and R. C. Gallo, Three distinct genes in human DNA related to the transforming genes of mammalian sarcoma retroviruses, Science 213: 226 (1981).CrossRefGoogle Scholar
  10. 10.
    R. Dalla Favera, E. P. Gelmann, R. C. Gallo and F. Wong-Staal, A human onc gene homologous to the transforming gene (v-sis) of simian sarcoma virus, Nature 292: 31 (1981).CrossRefGoogle Scholar
  11. 11.
    M. Oskarsson, W. L. Mc Clements, D. G. Blair, J. V. Maizel and G. F. Vande Woude, Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma virus, Science 207: 1222 (1980).CrossRefGoogle Scholar
  12. 12.
    M. S. Collett, J. S. Brugge and R. L. Erikson, Characterization of a normal avian cell protein related to the avian sarcoma virus transforming gene product, Cell 15: 1363 (1978).CrossRefGoogle Scholar
  13. 13.
    D. Shalloway, A. D. Zelenetz and G. M. Cooper, Molecular cloning and characterization of the chicken gene homologous to the transforming gene of Rous sarcoma virus, Cell 24: 531 (1981).CrossRefGoogle Scholar
  14. 14.
    S. P. Snyder and G. H. Theilen, Transmissable feline fibrosarcoma, Nature 221: 1074 (1969).CrossRefGoogle Scholar
  15. 15.
    M. B. Gardner, R. W. Rongey, P. Arnstein, J. D. Estes, P. Sarma, R. J. Huebner and G. G. Rickard, Experimental transmission of feline fibrosarcoma to cats and dogs, Nature 226: 807 (1970).CrossRefGoogle Scholar
  16. 16.
    S. K. McDonough, S. Larsen, R. S. Brodey, N. D. Stock and W. D. Hardy Jr., A transmissible feline fibrosarcoma of viral origin, Cancer Res. 31: 953 (1971).Google Scholar
  17. 17.
    A. G. Frankel, J. H. Gilbert, K. J. Porzig, E. M. Scolnick and S. A. Aaronson, Nature and distribution of feline sarcoma virus nucleotide sequences, J. Virol. 30: 821 (1979).Google Scholar
  18. 18.
    M. Shibuya, T. Hanafusa, H. Hanafusa and J. R. Stephenson, Homology exists among the transforming sequences of avian and feline sarcoma viruses. Proc. Natl. Acad. Sci. USA 77: 6536 (1980).CrossRefGoogle Scholar
  19. 19.
    G. Franchini, J. Even, C. J. Sherr and F. Wong-Staal, Onc sequences (v-fes) of Snyder-Theilen feline sarcoma virus are derived from discontiguous regions of a cat cellular gene (c-fes), Nature 290: 154 (1981).CrossRefGoogle Scholar
  20. 20.
    D. G. Bergman, L. M. Souza and M. A. Baluda, Vertebrate DNA contains nucleotide sequences related to the putative trans-forming gene of avian myeloblastosis virus, J. Virol, (in press).Google Scholar
  21. 21.
    S. P. Goff, E. Gilboa, 0. N. Witte and D. Baltimore, Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: Studies with cloned viral DNA, Cell 22: 777 (1980).CrossRefGoogle Scholar
  22. 22.
    A. Eva, K. C. Robbins, P. R. Andersen, A. Srinivasan, S. R. Tronick, E. P. Reddy, N. W. Ellmore, A. T. Galen, J. A. Lautenberger, T. Papas, E. H. Westin, F. Wong-Staal, R. C. Gallo and S. A. Aaronson, Cellular genes analogous to retroviral onc genes are transcribed in human tumor cells, (submitted).Google Scholar
  23. 23.
    J. Minowada, K. Sagawa, M. S. Lok, L. Kubonishi, S. Nakazawa, E. Tatsumi, T. Ohnuma and N. Goldblum, A model of lymphoid- myeloid cell differentiation based on the study of marker profiles of 50 human leukemia-lymphoma cell lines, in: “Int. Sym. on New Trends in Human Immunology and Cancer Immunotherapy”, B. Serrou and C. Rosenfeld, eds., Doin Publisher, Paris (1980).Google Scholar
  24. 24.
    S.J. Collins, R. C. Gallo and R. E. Gallagher, Continuous growth and differentiation of human myeloid leukemic cells in suspension culture, Nature 270: 347 (1977).CrossRefGoogle Scholar
  25. 25.
    S. J. Collins, F. W. Ruscetti, R. E. Gallagher and R. C. Gallo, Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458 (1978).CrossRefGoogle Scholar
  26. 26.
    T. Graf and H. Beug, Avian leukemia viruses: Interaction with their target cells in vivo and in vitro, Biochim. Biophys. Acta 516: 269 (1978).Google Scholar
  27. 27.
    H. T. Abelson and L. S. Rabstein, Lymphosarcoma: Virus-induced thymic independent disease in mice, Cancer Res. 30: 2208 (1970).Google Scholar
  28. 28.
    J. J. Harvey, An unidentified virus which causes the rapid production of tumors in mice, Nature 204: 1104 (1964).CrossRefGoogle Scholar
  29. 29.
    L. Wolfe, F. Deinhardt, G. Theilden, T. Kawakami and L. Bustad, Induction of tumors in marmoset monkeys by simian sarcoma virus type l (Largothrix): A preliminary report, J. Natl. Cancer Inst. 47: 1115 (1971).Google Scholar
  30. 30.
    P. S. Thomas, Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci. USA 77: 5201 (1980).CrossRefGoogle Scholar
  31. 31.
    J. M. Coffin, H. E. Varmus, H. E. Bishop, J. M. Bishop, M. Essex, W. D. Hardy, Jr., G. T. Martin, N. E. Rosenberg, E. M. Scolnick, R. A. Weinberg and P. K. Vogt, A proposal for naming host cell-derived inserts in retrovirus genomes. J. Virol. (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Flossie Wong-Staal
    • 1
  • Eric Westin
    • 1
  • Genoveffa Franchini
    • 1
  • Edward Gelmann
    • 1
  • Riccardo Dalla Favera
    • 1
  • Vittorio Manzari
    • 1
  • Robert C. Gallo
    • 1
  1. 1.Laboratory of Tumor Cell BiologyNational Cancer InstituteBethesdaUSA

Personalised recommendations