Nucleotide Sequence Analysis of Integrated Avian Myeloblastosis Virus (AMV) Long Terminal Repeat (LTR) and Their Host and Viral Junctions: Structural Similarities to Transposable Elements

  • T. S. Papas
  • K. E. Rushlow
  • J. A. Lautenberger
  • K. P. Samuel
  • M. A. Baluda
  • E. P. Reddy
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 57)


The nucleotide sequence of the integrated avian myeloblastosis virus (AMV) long terminal repeat (LTR) has been determined. The sequence is 385 bp long and is present at both ends of the viral DNA. The cell-virus junctions at each end consist of a six base pair direct repeat of cell DNA next to the inverted repeat of viral DNA, The LTR also contains promoter-like sequences, a mRNA capping site, and polyadenylation signals. Several features of this LTR suggest a structural and functional similarity with sequences of transposable and other genetic elements. Comparison of these sequences with LTRs of other avian retroviruses indicates that there is a great variation in the 3′ unique sequence (U3) while the 5′ specific sequences are highly conserved.


Transposable Element Long Terminal Repeat Inverted Repeat Rous Sarcoma Virus Avian Mye1ob1astosis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Beug, A. von Kirchbach, G. Doderlein, J.-F. Conscience, J.-F., and T. Graf. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18: 375 (1979).CrossRefGoogle Scholar
  2. 2.
    L. M. Souza and M. A. Baluda. Identification of the avian myelo-blastsosis virus genome. I. Identification of restriction endonuclease fragments associated with acute myeloblastic leukemia. J. Virol. 36: 317 (1980).Google Scholar
  3. 3.
    L. M. Souza, M. C. Komaromy, and M. A. Baluda. Identification of a proviral genome associated with avian myeloblastic leukemia. Proc. Natl. Acad. Sci. USA 77: 3004 (1980).CrossRefGoogle Scholar
  4. 4.
    L. M. Souza, M. J. Briskin, R. L. Hillyard, and M. A. Baluda. Identification of the avian myeloblastosis virus genome. II. Restriction endonuclease analysis of DNA from X proviral recombinants and leukemic myeloblast clones. J. Virol. 36: 325 (1980).Google Scholar
  5. 5.
    R. A. Schulz, J. G. Chirikjian, and T. S. Papas. Analysis of avian myeloblastosis viral RNA and in vitro sysnthesis of proviral DNA. Proc. Natl. Acad. Sci. USA 78: 2057 (1981).CrossRefGoogle Scholar
  6. 6.
    P. M. Duesberg, K. Bister, and C. Moscovici. Genetic structure of avian myeloblastsosis virus, released from transformed myeloblasts as a defective virus particle. Proc. Natl. Acad. Sci. USA 77: 5120 (1980).CrossRefGoogle Scholar
  7. 7.
    J. M. Bishop. Annu. Rev. Biochem. 47: 35–88 (1978).CrossRefGoogle Scholar
  8. 8.
    R. Dhar, W. L. McClements, L. W. Enquist, and G. F. Vande Woude. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc. Natl. Acad. Sci. USA 77: 3937 (1980).CrossRefGoogle Scholar
  9. 9.
    P. E. Reddy, M. J. Smith, E. Canaani, K. C. Robbins, S. R. Tronick, S. Zain, and S. A. Aaronson. Nucleotide sequence analysis of the transforming region and large terminal redundancies of Moloney murine sarcoma virus. Proc. Natl. Acad. Sci. USA 77: 5234 (1981).CrossRefGoogle Scholar
  10. 10.
    A. M. Maxam and W. Gilbert. Sequencing end-labeled DNA with base-specific chemical cleavages, in: “Methods in Enzymology,” K. Moldave and L. Grossman, Eds. (1980).Google Scholar
  11. 11.
    H. O. Smith and M. A. Birnstiel. A simple method for DNA restriction mapping. Nucleic Acids Res. 3: 2387 (1976).CrossRefGoogle Scholar
  12. 12.
    F. Hishinuma, P. J. DeBone, S. Astrin, and A. M. Skalka. Nucleotide sequence of acceptor site and termini of integrated avian endogenous provirus evl: integration creates a 6 bp. Cell 23: 155 (1981).CrossRefGoogle Scholar
  13. 13.
    R. Swanstrom, W. J. DeLorbe, J. M. Bishop, and H. E. Varmus. Nucleotide sequence of cloned unintegrated avian sarcoma virus DNA: viral DNA contains direct and inverted repeats similar to those in transposable elements. Proc. Natl. Acad. Sci. USA 78: 124 (1981).CrossRefGoogle Scholar
  14. 14.
    E. Stoll, M. A, Billeter, A. Palmenberg, and C. Weissman. Avian myeloblastosis virus RNA is terminally redundant: Implications for the mechanism of retrovirus replication. Cell 12: 57 (1977).CrossRefGoogle Scholar
  15. 15.
    D. Pribnow. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Natl. Acad. Sci. USA 72: 784 (1975).CrossRefGoogle Scholar
  16. 16.
    N. J. Proudfoot and G. G. Brownlee. 3′ Non-coding region sequences in eukaryotic messenger RNA. Nature (London) 263: 211 (1976).CrossRefGoogle Scholar
  17. 17.
    A. Efstratiadis, J. W. Posakony, T. Maniatis, R. M. Lawn, C. O’Connell, R. A. Spritz, J. K. DeRiel, B. G. Forget, S. M. Weissman, J. L. Slightom, A. E. Blechl, O. Smithies, F. E. Baralle, C. C. Shoulders, N. J. Proudfoot. The structure and evolution of the human 3-globin gene family. Cell 21: 653 (1980).CrossRefGoogle Scholar
  18. 18.
    S. H. Hughes, A. Mutshchler, J. M. Bishop, and H. E. Varmus. A Rous sarcoma virus provirus is flanked by short direct repeats of a cellular DNA sequence present in only one copy prior to integration. Proc. Natl. Acad. Sci. USA 78: 4299 (1981)CrossRefGoogle Scholar
  19. 19.
    D. A. Konkel, J. V. Maizel, and P. Leder. The evolution and sequence comparison of two recently diverged mouse chromosomal 3-globin genes. Cell 18: 865 (1979).CrossRefGoogle Scholar
  20. 20.
    J. V. Maizel. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  21. 21.
    C. L. Queen and L. J. Korn. Computer analysis of nucleic acids and proteins, in: “Methods in Enzymology,” K. Moldave and L. Grossman, Eds. (1980).Google Scholar
  22. 22.
    G. Ju and A. M. Skalka. Nucleotide sequence analysis of the long terminal repeat (LTR) of avian retroviruses: structural similarities with transposable elements. Cell 22: 379 (1980).CrossRefGoogle Scholar
  23. 23.
    D. Schwartz, R. Tizard, and W. Gilbert. Personal communication.Google Scholar
  24. 24.
    E. Gilboa, S. W. Mitra, S. Goff, and D. Baltimore. A detailed model of reverse transcription and tests of crucial aspects. Cell 18: 93 (1979).CrossRefGoogle Scholar
  25. 25.
    K. Shimotohno, S. Mizutani, and H. M. Temin. Sequence of retrovirus provirus resembles that of bacterial transposable elements. Nature 285: 550 (1980).CrossRefGoogle Scholar
  26. 26.
    M. Barbacid, E. Hunter, and S. A. Aaronson. Avian reticulo-endotheliosis viruses: Evolutionary linkage with mammalian type C retroviruses. J. Virol. 30: 508 (1979).Google Scholar
  27. 27.
    T. Yamamoto, B. deCrombrugghe, and I. Pastan. Identification of a functional promoter in the long terminal repeat of a Rous sarcoma virus. Cell 22: 787 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • T. S. Papas
    • 1
  • K. E. Rushlow
    • 1
  • J. A. Lautenberger
    • 1
  • K. P. Samuel
    • 1
  • M. A. Baluda
    • 3
  • E. P. Reddy
    • 2
  1. 1.Laboratory of Molecular OncologyNational Cancer InstituteBethesdaUSA
  2. 2.Laboratory of Cellular and Molecular BiologyNational Cancer InstituteBethesdaUSA
  3. 3.UCLA School of Medicine and Molecular Biology InstituteLos AngelesUSA

Personalised recommendations