Transforming Genes of Avian Retroviruses and Their Relation to Cellular Prototypes

  • P. Duesberg
  • T. Robins
  • W.-H. Lee
  • C. Garon
  • T. Papas
  • K. Bister
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 57)


The relationship between two types of retroviral onc genes and cellular structural homologs termed proto-onc genes was studied. The type I Rous sarcoma virus (RSV) src gene, which is unrelated to essential virion genes, was found to have a complete structural homolog in cloned chicken DNA based on fingerprinting RNA-DNA hybrids. By the same techniques only the specific part (mcv) of the type II MC29 virus onc gene, which is a hybrid that also includes part (Δ) of the structural gag gene of retroviruses (Δ gag-mcv), was found to have a structural homolog in the cell. Hence, the onc gene of MC29 does not have a complete homolog in the cell. Both onc-related cellular loci are not linked to any other virion sequences. Presumed host markers of certain viral src genes, said to be experimentally transduced from the cell, were not detected in the proto src-locus. The cellular mcv-locus was found to be interrupted by one sequence of non-homology relative to the viral counterpart; the src-locus is known to be interrupted by six. We deduce that there is a close qualitative sequence-homology between the virion gene-unrelated sequences of viral onc genes and cellular proto-onc genes. However, functional homology between viral one genes and proto-onc loci cannot be deduced due to the different arrangements of onc-related sequences in viruses and cells and to scattered single nucleotide differences in their primary structures and due to the lack of Δ gag in cellular prototypes of hybrid onc genes, such as Δ gag mcv. Considering the genetic structures of RSV and MC29 and those of the corresponding cellular DNA loci, it follows that the generation of viruses like RSV and MC29 by transduction of cellular sequences into the genome of a retrovirus must have involved rare, illegitimate recombinations and specific deletions.


Globin Gene Rous Sarcoma Virus Helper Virus Avian Myeloblastosis Virus Avian Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Bister and P. H. Duesberg, Genetic structure and transforming genes of avian retroviruses, in: “Advances in Viral Oncology,” G. Klein, ed., Raven Press, New York, in press, (1982).Google Scholar
  2. 2.
    P. H. Duesberg and K. Bister, in: “Cancer: Achievements, Challenges and Prospects for the 1980’s,” J. Burchenal and J. Oettgen, ed., Grune and Stratton, New York (1981).Google Scholar
  3. 3.
    P. H. Duesberg, Transforming genes of retroviruses, Cold Spring Harbor Symp. Quant. Biol. 44: 13–29 (1980).CrossRefGoogle Scholar
  4. 4.
    P. H. Duesberg and P. K. Vogt, Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses, Proc. Natl. Acad. Sci. 67: 1673–1680 (1970).CrossRefGoogle Scholar
  5. 5.
    K. Bister, G. Ramsay, M. J. Hayman, and P. H. Duesberg, 0K10, an avian acute leukemia virus of the MC29 subgroup with a unique genetic structure, Proc. Natl. Acad. Sci., 77: 7142–7146 (1980).CrossRefGoogle Scholar
  6. 6.
    M. M.-C. Lai, P. H. Duesberg, J. Horst, and P. K. Vogt, Avian tumor virus RNA: A comparison of three sarcoma viruses and their transformation-defective derivatives by oligonucleotide fingerprinting and DNA-RNA hybridization, Proc. Natl. Acad. Sci., 70: 2266–2270 (1973).CrossRefGoogle Scholar
  7. 7.
    J. Brugge and R. J. Erikson, Identification of a transformation-specific antigen induced by an avian sarcoma virus, Nature, 269: 346–348 (1977).CrossRefGoogle Scholar
  8. 8.
    P. H. Duesberg, K. Bister, and C. Moscovici, Genetic structure of avian myeloblastosis virus released from transformed myeloblasts as a defective virus particle, Proc. Natl. Acad. Sci. 77: 5120–5124 (1980).CrossRefGoogle Scholar
  9. 9.
    K. Bister, M. J. Hayman, and R. K. Vogt, Defectiveness of avian myelocytomatosis virus MC29: Isolation of long-term nonproducer cultures and analysis of virus- specific polypeptide synthesis, Virology, 82: 431–448 (1977).CrossRefGoogle Scholar
  10. 10.
    P. Mellon, A. Pawson, K. Bister, G. S. Martin, and P. H. Duesberg, Specific RNA sequences and gene products of MC29 avian acute leukemia virus, Proc. Natl. Acad. Sci., 75: 5874–5878 (1978).CrossRefGoogle Scholar
  11. 11.
    W.-H. Lee, K. Bister, A. Pawson, T. Robins, C. Moscovici, and P. H. Duesberg, Fujinami sarcoma virus: An avian RNA tumor virus with a unique transforming gene, Proc. Natl. Acad. Sci., 77: 2018–2022 (1980).CrossRefGoogle Scholar
  12. 12.
    K. Bister and P.H. Duesberg, Structure and specific sequences of avian erythroblastosis virus RNA: Evidence for multiple classes of transforming genes among avian tumor viruses, Proc. Natl. Acad. Sci., 76: 5023–5027 (1979).CrossRefGoogle Scholar
  13. 13.
    K. Bister and P. H. Duesberg, Genetic structure of avian acute leukemia viruses, Cold Spring Harbor Symp. Quant. Biol., 44: 801–822 (1980).CrossRefGoogle Scholar
  14. 14.
    L. Gross, “Oncogenic Viruses,” Pergamon Press, New York (1970).Google Scholar
  15. 15.
    J. J. Harvey, An unidentified virus which causes the rapid production of tumors in mice, Nature, 284: 1104–1105 (1964).CrossRefGoogle Scholar
  16. 16.
    W. M. Kirsten and L.A. Mayer, Morphologic responses to a murine erythroblastosis virus, J. Nat. Cancer Inst., 39: 311–335 (1967).Google Scholar
  17. 17.
    J. B. Moloney, A virus-induced rhabdomyosarcoma of mice, in: “Conference on Murine Leukemia,” Nat. Cancer Inst. Monograph No. 22, U. S. Public Health Service, Bethesda, Maryland (1966).Google Scholar
  18. 18.
    H. T. Abelson and L. S. Rabstein, Lymphosarcoma: virus- induced thymine-independent disease in mice, Cancer Res., 30: 2213–2222 (1970).Google Scholar
  19. 19.
    N. Oker-Blom, H. Westermark, and S. Rosengard, Effect of — 1-adamantanamine hydrochloride (Amantadine) on chicken leukosis, in: “Progress in Antimicrobial and Anticancer Chemotherapy Vol.2,” University Press, Baltimore, (1970).Google Scholar
  20. 20.
    R. J. Huebner and G. J. Todaro, Oncogenes of RNA tumor viruses as determinants of cancer, Proc. Natl. Acad. Sci., 64: 1087–1094 (1969).CrossRefGoogle Scholar
  21. 21.
    J. M. Bishop, Enemies within: the genesis of retrovirus oncogenes, Cell, 23: 5–6 (1981).CrossRefGoogle Scholar
  22. 22.
    H. M. Temin, The protovirus hypothesis: Speculations on the significance of RNA directed DNA synthesis for normal development and for carcinogenesis, J. Nat. Cane. Inst., 46: 3–7 (1971).Google Scholar
  23. 23.
    H. M. Temin, Origin of retroviruses from cellular moveable genetic elements, Cell, 21: 599–600 (1980).CrossRefGoogle Scholar
  24. 24.
    J. Maisei, V. Klement, M. M. C. Lai, W. Ostertag, and P. H. Duesberg, Ribonucleic acid components of murine sarcoma and leukemia viruses, Proc. Natl. Acad. Sci., 70: 3536–3540 (1973).CrossRefGoogle Scholar
  25. 25.
    E. M. Scolnick, E. Rands, D. Williams, and W. P. Parks, Studies on the nucleic acid sequences of Kirsten sarcoma virus: A model for the formation of a mammalian RNA-containing, sarcoma virus, J. Virol., 12: 456–463 (1973).Google Scholar
  26. 26.
    E. M. Scolnick and W. P. Parks, Harvey sarcoma virus: A second murine type C sarcoma virus with rat genetic information, J. Virol., 13: 1211–1219 (1974).Google Scholar
  27. 27.
    N. Tsuchida, R. V. Gilden, and M. Hatanaka, Sarcoma virus-related RNA sequences in normal rat cells, Proc. Natl. Acad. Sci., 71: 4503–4507 (1974).CrossRefGoogle Scholar
  28. 28.
    A. D. Frankel and P. J. Fischinger, Nucleotide sequences in mouse DNA and RNA specific for Moloney sarcoma virus, Proc. Natl. Acad. Sci., 73: 3705–3709 (1976).CrossRefGoogle Scholar
  29. 29.
    D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA, Nature. 260: 170–173 (1976).CrossRefGoogle Scholar
  30. 30.
    D. Sheiness, S. M. Hughes, H. E. Varmus, E. Stubblefield, and J. M. Bishop, The vertebrate homolog of the putative transforming gene of avian myelocytomatosis virus: Characteristics of the DNA locus and its RNA transcript, Virology, 105: 415–424 (1980).CrossRefGoogle Scholar
  31. 31.
    31- D. Stehelin, S. Saule, M. Roussel, A. Sergeant, C. Lagrou, C. Rommens, and M. B. Raes, Three new types of viraloncogenes in defective avian leukemia viruses: I. Specific nucleotide sequences of cellular origin correlate with specific transformation, Cold Spring Harbor Symp. Quant, Biol., 44: 1214–1223 (1980).CrossRefGoogle Scholar
  32. 32.
    W. S. Hayward, G. B. Neel, and S. M. Astrin, Activation of a cellular onc gene by promoter insertion in ALV- induced lymphoid leukosis, Nature, 290: 475–480 (1981).CrossRefGoogle Scholar
  33. 33.
    M. Oskarsson, W. C. McClements, D. G. Blair, J. V. Maizel, and G. F. Vande Woude, Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma virus, Science, 207:1222–1224 (1980).CrossRefGoogle Scholar
  34. 34.
    D. DeFeo, M. A. Gonda, H. A. Young, E. J. Chang, D. R. Lowy, E. M. Scolnick, and R. W. Ellis, Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus, Proc. Natl. Acad. Sci., 78: 3328–3332 (1981).CrossRefGoogle Scholar
  35. 35.
    H. Hanafusa, C. C. Halpern, D. C. Buchhagen, and S. Kawai, Recovery of avian sarcoma virus from tumors induced by transformation-defective mutants, J. Exp. Med., 146: 1735–1747 (1977).CrossRefGoogle Scholar
  36. 36.
    H. Hanafusa, L.-H. Wang, T. Hanafusa, S. M. Anderson, R. E. Karess, and W. S. Hayward, The nature and origins of the transforming gene of avian sarcoma viruses, In: “Animal Virus Genetics,” B. Fields, R. Jaenisch, and C. F. Fox, eds., ICN-UCLA Symposia on Molecular and Cellular Biology, Academic Press, New York, (1980).Google Scholar
  37. 37.
    R. Vigne, J. C. Neil, M. L. Breitman, and P. K. Vogt, Recovered sre genes are polymorphic and contain host markers, Virology, 105: 71–85 (1980).CrossRefGoogle Scholar
  38. 38.
    R. Vigne, M. Breitman, C. Moscovici, and P. K. Vogt, Restitution of fibroblast-transforming ability in src-deletion mutants of avian sarcoma virus during animal passage, Virology, 93: 413–426 (1979).CrossRefGoogle Scholar
  39. 39.
    M. M.-C. Lai, S. S. F. Hu, and P. K. Vogt, Occurrence of partial sre deletion and substitution of the sre gene in the RNA genome of avian sarcoma virus, Proc. Natl. Acad. Sci., 74: 4781–4785 (1977).CrossRefGoogle Scholar
  40. 40.
    L.-H. Wang, C. C. Halpern, M. Nadel, and H. Hanafusa, Recombination between viral and cellular sequences generates transforming sarcoma virus, Proc. Natl. Acad. Sci., 75: 5812–5816 (1978).CrossRefGoogle Scholar
  41. 41.
    W.-H. Lee, M. Nunn, and P. H. Duesberg, Src genes of ten Rous sarcoma virus strains, including two reportedly transduced from the cell, are completely allelic; Putative markers of transduction are not detected, J. Virol., 39: 758–776 (1981).Google Scholar
  42. 42.
    T. Robins, and P. H. Duesberg, Specific RNA sequences of Rous sarcoma virus (RSV) recovered from tumors induced by transformation-defective RSV deletion mutants, Virology, 93: 427–434 (1979).CrossRefGoogle Scholar
  43. 43.
    A. P. Czernilofsky, A. D. Levinson, H. E. Varmus, and J. M. Bishop, Nucleotide sequences of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product, Nature, 287: 198–203 (1980).CrossRefGoogle Scholar
  44. 44.
    D. Shalloway, A. D. Zelentz, and G. M. Cooper, Molecular cloning and characterization of the chicken gene homologous to the transforming gene of Rous sarcoma virus, Cell, 24: 531–541 (1981).CrossRefGoogle Scholar
  45. 45.
    S. J. Hughes, F. Stubblefield, F. Payvar, J. D. Engel, J. G. Dodgson, D. Spector, B. Cordell, R. T. Schimke, and H. Varmus, Gene localization by chromosome fractionation: Globin genes are on at least two chromosomes and three estrogen-inducible genes are on three chromosomes, Proc. Natl. Acad. Sci., 76: 1348–1352 (1979).CrossRefGoogle Scholar
  46. 46.
    T. Robins, K. Bister, C. Garon, T. Papas, and P. H. Duesberg, Structural relationship between g. normal chicken DNA locus and the transforming gene of the avian acute leukemia virus MC29, J. Virol., in press, (1982).Google Scholar
  47. 47.
    J. G. Dodgson, Strommer and J. A. Engel, Isolation of the chicken-globin gene and a linked embryonic — like globin gene from a chicken DNA recombinant library, Cell, 17: 879–887 (1979).CrossRefGoogle Scholar
  48. 48.
    J. A. Lautenberger, R. A. Schulz, C. F. Garon, P. H. Tsichlis, and T. S. Papas, Molecular cloning of avian myeloblastosis virus (MC29) transforming sequences, Proc. Natl. Acad. Sci., 78: 1518–1522 (1981).CrossRefGoogle Scholar
  49. 49.
    P. H. Duesberg, K. Bister, and C. Moscovici, Avian acute leukemia virus MC29: Conserved and variable RNA sequences and recombination with helper virus, Virology, 99: 121–134 (1979).CrossRefGoogle Scholar
  50. 50.
    L.-H. Wang, P. H. Duesberg, S. Kawai, and H. Hanafusa, Location of envelope-specific and sarcoma-specific oligonucleotides in RNA of Schmidt-Ruppin rous sarcoma virus, Proc. Natl. Acad. Sci., 73: 447–451 (1976).CrossRefGoogle Scholar
  51. 51.
    J. Tooze, “The Molecular Biology of Tumor Viruses,” Cold Spring Harbor Press, New York (1973).Google Scholar
  52. 52.
    J. Maisel, D. Dina, and P. H. Duesberg, Murine sarcoma viruses: the helper independence reported for a Moloney variant is unconfirmed; distinct strains differ in the size of their RNAs, Virology, 76: 295–312 (1977).CrossRefGoogle Scholar
  53. 53.
    P. H. Tsichlis, K. F. Conklin, and J. M. Coffin, Role of the c-region in relative growth rates of endogenous and exogenous avian oncoviruses, Proc. Natl. Acad. Sci., 77: 536–540 (1980).CrossRefGoogle Scholar
  54. 54.
    S. Y. Wang, W. S. Hayward, and H. Hanafusa, Genetic variation in the RNA transcripts of endogenous virus genes in uninfected chicken cells, J. Virol., 24: 64–73 (1977).Google Scholar
  55. 55.
    I. S. Y. Chen, T. W. Mak, J. J. O’Rear, and H. M. Temin, Characterization of reticuloendotheliosis virus strain T [REV-T(REV-A)] DNA and the isolation of a novel variant of REV-T by molecular cloning, J. Virol., in press (1981).Google Scholar
  56. 56.
    S. S. F. Hu, M. M. C. Lai, T. C. Wong, R. S. Cohen, and M. Sevoian, Avian reticuloendotheliosis virus: Characterization of the genome structure by heteroduplex mapping, J. Virol., 37: 899–907 (1981).Google Scholar
  57. 57.
    B. Perbal, and M. Baluda, The avian myeloblastosis virus transforming gene is related to unique chicken DNA regions separated by at least one intervening sequence, J. Virol., in press (1981).Google Scholar
  58. 58.
    S. P. Goff, E. Gilboa, O. N. Witte, and D. Baltimore, Structure of the Abelson murine leukemia virus genome and the homologus cellular gene: Studies with cloned viral DNA, Cell, 22: 777–785 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • P. Duesberg
    • 1
  • T. Robins
    • 1
  • W.-H. Lee
    • 1
  • C. Garon
    • 2
  • T. Papas
    • 2
  • K. Bister
    • 1
  1. 1.Department of Molecular BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Tumor Virus Genetics LaboratoryNational Cancer InstituteBethesdaUSA

Personalised recommendations