Molecular Biology

Application to Prenatal Diagnosis of Genetic Disorders of Hemoglobin
  • Yuet Wai Kan


To some people, scientists included, the advances in molecular biology that have been hailed from time to time in the popular and scientific press have yet to live up to the promises made for them. But practical benefits there are, and three recent articles1–3 illustrate the progress being made in another direction—the antenatal diagnosis of thalassemia and sickle cell disease, serious disorders that affect millions of people in some parts of the world. While the goal of treatment is still elusive, increasingly ambitious prevention programs are being undertaken and the social impact is already becoming apparent.


Sickle Cell Anemia Sickle Cell Amniotic Fluid Prenatal Diagnosis Globin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, J. C., and Kan, Y. W., 1982, A sensitive new prenatal test for sickle cell anemia, N. Engl. J. Med. 307:30–32.CrossRefGoogle Scholar
  2. 2.
    Orkin, S. H., Little, P. F. R., Kazazian, H. H., Jr., and Boehm, C. D., 1982, Improved detection of the sickle mutation by DNA analysis and its application to prenatal diagnosis. N. Engl. J. Med. 307:32–36.CrossRefGoogle Scholar
  3. 3.
    Wilson, J. T., Milner, P. F., Summer, M. E., Nauaseth, F. S., Fadel, H. E., Reindollar, R. H., McDonough, P. G., and Wilson, L. B., 1982, Use of restriction endonucleases for mapping the allele for βS-globin, Proc. Natl. Acad. Sci. USA 79:3628–3631.CrossRefGoogle Scholar
  4. 4.
    Seargeant, G. R., 1979, The Clinical Features of Sickle Cell Disease (A. G. Beam, D. A. K. Black, and H. H. Hiatt, eds.), North-Holland Publishing Company, Amsterdam.Google Scholar
  5. 5.
    Platt, O., and Nathan, D. G., 1981, Sickle cell disease, in: Hematology of Infancy and Childhood, Volume 1 (D. G. Nathan and F. A. Oski, eds.), W. B. Saunders Company, Philadelphia, pp. 687–725.Google Scholar
  6. 6.
    Weatherall, D. J., and Clegg, J. B., 1981, The Thalassaemia Syndromes, 3rd ed., Blackwell Scientific Publications, Oxford.Google Scholar
  7. 7.
    Stamatoyannopoulos, G., 1974, Problems of screening and counseling in hemoglobinopathies, in: Birth Defects (A. G. Motulsky and W. Lenz, eds.), Excerpta Medica, Amsterdam, pp. 268–276.Google Scholar
  8. 8.
    Kaback, M. M., Zeiger, R. S., Reynolds, L. W., and Sonneborn, M., 1974, Tay-Sachs disease: A model for the control of recessive genetic disorders, in: Birth Defects (A. G. Motulsky and W. Lenz, eds.), Excerpta Medica, Amsterdam, pp. 248–262.Google Scholar
  9. 9.
    Milunsky, A., 1979, Genetic Disorders and the Fetus: Diagnosis, Prevention, and Treatment, Plenum Press, New York.Google Scholar
  10. 10.
    Alter, B. P., 1979, Prenatal diagnosis of hemoglobinopathies and other hemotologic disease, J. Pediatr 95:501–503.CrossRefGoogle Scholar
  11. 11.
    Nathans, D., and Smith, H. O., 1975, Restriction endonucleases in the analysis and restructuring of DNA molecules, Annu. Rev. Biochem. 44:273–293.CrossRefGoogle Scholar
  12. 12.
    Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98:503–517.CrossRefGoogle Scholar
  13. 13.
    Mears, J. G., Ramirez, F., Liebowitz, D., Nakamura, F., Bloom, A., Konotey-Ahulu, F., and Bank, A., 1978, Changes in restricted human cellular DNA fragments containing globin gene sequences in thalassemia and related disorders, Troc. Natl. Acad. Sci. USA 75:1222–1226.CrossRefGoogle Scholar
  14. 14.
    Orkin, S. H., Alter, B. P., Altay, C., Mahoney, M. J., Lazarus, H., Hobbins, J. C., and Nathan, D. G., 1978, Application of endonuclease mapping to the analysis and prenatal diagnosis of thalassemia caused by globin-gene deletion, N. Engl. J. Med. 299:166–172.CrossRefGoogle Scholar
  15. 15.
    Kan, Y. W., and Dozy, A. M., 1978, Polymorphism of DNA sequence adjacent to human β-globin structural gene: Relationship to sickle mutation, Troc. Natl. Acad. Sci. USA 75:5631–5635.CrossRefGoogle Scholar
  16. 16.
    Wilson, J. T., Mimer, P. F., Summer, M. E., Nallaseth, F. S., Fadel, H. E., Reindollar, R. H., McDonough, P. G., and Wilson, L. B., 1982, Use of restriction endonucleases for mapping the allele for βS-globin, Troc. Natl. Acad. Sci. USA 79:3628–3631.CrossRefGoogle Scholar
  17. 17.
    Baird, M., Driscoll, C., Schreiner, H., Sciarratta, G. V., Sansone, G., Niazi, G., Ramirez, F., and Bank, A., 1981, A nucleotide change at a splice junction in the human β-globin gene is associated with β0-thalassemia, Troc. Natl. Acad. Sci. USA 78:4218–4221.CrossRefGoogle Scholar
  18. 18.
    Dozy, A. M., Forman, E. N., Abuelo, D. N., Barsel-Bowers, G., Mohoney, M. J., Forget, B. G., and Kan, Y. W., 1979, Prenatal diagnosis of homozygous a thalassemia, J. Am. Med. Assoc. 241:1610–1612.CrossRefGoogle Scholar
  19. 19.
    Kan, Y. W., Lee, K. Y., Furbetta, M., Angius, A., and Cao, A., 1980, Polymorphism of DNA sequence in the β-globin gene region: Application to prenatal diagnosis of β0 thalassemia in Sardinia, N. Engl. J. Med. 302:185–188.CrossRefGoogle Scholar
  20. 20.
    Antonarakis, S. W., Boehm, C. D., Giardinia, P. J. V., and Kazazian, H. H., 1982, Non-random association of polymorphic restriction sites in the β-globin gene cluster. Troc. Natl. Acad. Sci. USA 79:137–141.CrossRefGoogle Scholar
  21. 21.
    Sokal, D. C., Byrd, J. R., Chen, A. T. L., Goldberg, M. F., and Oakley, G. P., Jr., 1980, Prenatal chromosomal diagnosis: Racial and geographic variation for older women in Georgia, J. Am. Med. Assoc. 244:1355–1357.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Yuet Wai Kan
    • 1
  1. 1.Howard Hughes Medical Institute Laboratory and Department of MedicineUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations