Advertisement

Cryocoolers pp 177-255 | Cite as

Very-Low-Temperature Cooling Systems

  • Ray Radebaugh
Part of the The International Cryogenics Monograph Series book series (ICMS)

Abstract

Very low temperatures can take on a variety of different meanings, depending on one’s low-temperature experience. Those unfamiliar with cryogenics would usually refer to liquid nitrogen as being at very low temperatures. The adverb “very” is generally used for something out of the ordinary, and for those more familiar with cryogenics, the temperature range below 1 K might better fit this category. Such a choice merely reflects the present status of our refrigeration efforts and could therefore change with time. For this book, however, we arbitrarily define very low temperatures as those below about 1 K. Other terms, such as ultralow temperatures or millikelvin temperatures, have also been used in the past by others to describe the same region. The temperature of 1 K seems to be a good dividing line since the refrigeration techniques used below 1 K are usually quite different from those used above 1 K. The vapor pressure of He4 becomes too small below about 1 K to be of any use in a gas refrigerator. The isotope He3 retains a reasonable vapor pressure down to about 0.3 K, but for lower temperatures liquid-vapor equilibrium cannot be used for refrigeration. Not only are the refrigeration techniques below 1 K usually different from those above 1 K, but the temperatures are expressed in terms of millikelvin, microkelvin, or even nanokelvin.

Keywords

Heat Exchanger Dynamic Nuclear Polarization Silver Powder Dilution Refrigerator Heat Leak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, W. R., Anderson, A. C., Black, W. C., and Wheatley, J. C. (1965). Physics 1, 337.Google Scholar
  2. Abragam, A., Bouffard, V., Goldman, M., and Roinel, Y. (1978b). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8 39, 1436.Google Scholar
  3. Abragam, A., and Goldman, M. (1978a). Rep. Prog. Phys. 41, 395.ADSCrossRefGoogle Scholar
  4. Abragam, A., and Proctor, W. G. (1958). C.R. Acad. Sci. Paris 246, 2253.Google Scholar
  5. Ahonen, A. I., Berglund, P. M., Haikala, M. J., Krusius, M., Lounasmaa, O. V., and Paalanen, M. A. (1976). Cryogenics 16, 521.CrossRefGoogle Scholar
  6. Ahonen, A. I., Gully, W. J., Lounasmaa, O. V., and Veuro, M. C. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8 39, 1153.Google Scholar
  7. Ahonen, A. I., Lounasmaa, O. V., and Veuro, M. C. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8, 39, 265.Google Scholar
  8. Al’tshuler, S. A. (1966). JETP Lett. 3, 112.ADSGoogle Scholar
  9. Ambler, E., and Dover, R. B. (1961). Rev. Sci. Instrum. 32, 737.ADSCrossRefGoogle Scholar
  10. Anderson, A. C. (1970). Rev. Sci. Instrum. 41, 1446.ADSCrossRefGoogle Scholar
  11. Andres, K. (1978). Cryogenics 18, 473.CrossRefGoogle Scholar
  12. Andres, K., and Bucher, E. (1968). Phys. Rev. Lett. 21, 1221.ADSCrossRefGoogle Scholar
  13. Andres, K., and Bucher, E. (1971). J. Appl. Phys. 42, 1522.ADSCrossRefGoogle Scholar
  14. Andres, K., and Bucher, E. (1972). J. Low Temp. Phys. 9, 267.ADSCrossRefGoogle Scholar
  15. Andres, K., and Darack, S. (1974). Phys. Rev. B 10, 1967.ADSCrossRefGoogle Scholar
  16. Andres, K., and Darack, S. (1977). Physica 86–88 B + C, 1071.Google Scholar
  17. Andres, K., and Sprenger, W. O. (1975). Proc. 14th Int. Conf. on Low Temp. Phys., North-Holland Publishing Co., Amsterdam. Vol. 1, p. 123.Google Scholar
  18. Anufriyev, Yu. D. (1965). Zh. Eksp. Teor. Fiz. Pis’ma Red. (Engl, transi.) JETP Lett. 1, 155.Google Scholar
  19. Avenel, O., Berglund, M. P., Gylling, R. G., Phillips, N. E., Vetleseter, A., and Vuorio, M. (1973). Phys. Rev. Lett. 31, 76.ADSCrossRefGoogle Scholar
  20. Bardeen, J., Baym, G., and Pines, D. (1967). Phys. Rev. 156, 207.ADSCrossRefGoogle Scholar
  21. Berglund, P. M., Ehnhom, G. J., Gylling, R. G., Lounasmaa, O. V., and Sovik, R. P. (1972). Cryogenics 12, 297.CrossRefGoogle Scholar
  22. Betts, D. S. (1976). Refrigeration and Thermometry Below One Kelvin. Sussex University Press.Google Scholar
  23. Betts, D. S., and Marshall, R. (1969). Cryogenics 9, 460.Google Scholar
  24. Binnig, G., and Hoenig, H. E. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Supp. No. 8 39, 1148.Google Scholar
  25. Boughton, R. I., Brubaker, N. R., and Sarwinski, R. J. (1967). Rev. Sci. Instrum. 38, 1177.ADSCrossRefGoogle Scholar
  26. Brubaker, N. R., Edwards, D. O., Sarwinski, R. E., Seligman, P., and Sherlock, R. A. (1970). J. Low Temp. Phys. 3, 619;ADSCrossRefGoogle Scholar
  27. Brubaker, N. R., Edwards, D. O., Sarwinski, R. E., Seligman, P., and Sherlock, R. A. (1970). Phys. Rev. Lett. 25, 715.ADSCrossRefGoogle Scholar
  28. Bucher, E., Andres, K., Maita, J. P., Cooper, A. S., and Longinotti, L. D. (1971). J. Phys. (Paris) Colloq. C-1 32, 114.CrossRefGoogle Scholar
  29. Chanin, G., and Torre, J. P. (1976). 6th Int. Cryog. Eng. Conf. IPC Science and Technology Press, Guildford, England, p. 96.Google Scholar
  30. Chapellier, M. (1971). Proc. 12th Int. Conf. on Low Temp. Phys., Academic Press of Japan, p. 637.Google Scholar
  31. Chapellier, M., Frossati, G., and Rasmussen, F. B. (1979). Phys. Rev. Lett. 42, 904.ADSCrossRefGoogle Scholar
  32. Chapellier, M., Goldman, M., Vu Hoang Chau, and Abragam, A. (1969). C.R. Acad. Sci. Paris 268, 1530.Google Scholar
  33. Chapellier, M., Goldman, M., Vu Hoang Chau, and Abragam, A. (1970). J. Appl. Phys. 41, 849.ADSCrossRefGoogle Scholar
  34. Childs, G. E., Ericks, L. J., and Powell, R. L. (1973). Thermal Conductivity of Solids at Room Temperature and Below. National Bureau of Standards Monograph 131.Google Scholar
  35. Cohen, E. G. D., and Van Leeuwen, J. M. J. (1961). Physica 27, 1157.ADSMATHCrossRefGoogle Scholar
  36. See also Cohen, E. G. D., and Van Leeuwen, J. M. J. (1960). Physica 26, 1171;CrossRefGoogle Scholar
  37. Van Leeuwen, J. M. J., and Cohen, E. G. D. (1967). Phys. Lett. 26A, 89.ADSGoogle Scholar
  38. Collins, S. C., and Zimmerman, F. J. (1953). Phys. Rev. 90, 991.ADSCrossRefGoogle Scholar
  39. Corruccini, L. R., Osheroff, D. D., Lee, D. M., and Richardson, R. C. (1972). J. Low Temp. Phys. 8, 229.ADSCrossRefGoogle Scholar
  40. Daniels, J. M., and Robinson, F. N. (1953). Phil. Mag. 44, 630.Google Scholar
  41. Das, P., de Bruyn Ouboter, R., and Taconis, K. W. (1965). Proc. 9th Int. Conf. on Low Temp. Phys., Plenum Press, New York, p. 1253.Google Scholar
  42. Daunt, J. G. (1970). Cryogenics 10, 473.CrossRefGoogle Scholar
  43. Daunt, J. G., and Heer, C. V. (1949). Phys. Rev. 76, 985.ADSCrossRefGoogle Scholar
  44. Daunt, J. G., and Lerner, E. (1970). Cryogenics 10, 476.CrossRefGoogle Scholar
  45. Daunt, J. G., and Lerner, E. (1974). Proc. 5th Int. Cryog. Eng. Conf. IPC Science and Technology Press, Guildford, p. 238.Google Scholar
  46. Debye, P. (1926). Ann. Phys. (Leipzig) 81, 1154.ADSMATHGoogle Scholar
  47. de Haas, W. J., Wiersma, E. C., and Kramers, H. A. (1933). Nature 131, 719;Google Scholar
  48. de Haas, W. J., Wiersma, E. C., and Kramers, H. A. Physica 1, 1 (1934).ADSCrossRefGoogle Scholar
  49. De Long, L. E., Symko, O. G., and Wheatley, J. C. (1971). Rev. Sci. Instrum. 42, 147.ADSCrossRefGoogle Scholar
  50. de Waele, A. J. A. M., Coops, G. M., and Gijsman, H. M. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8 39, 1150.Google Scholar
  51. de Waele, A. Th. A. M., Reekers, A. B., and Gijsman, H. M. (1976). Physica 81B, 323;Google Scholar
  52. de Waele, A. Th. A. M., Reekers, A. B., and Gijsman, H. M. (1976) Proc. 6th Int. Cryog. Eng. Conf., IPC Science and Technology Press, Guildford, p. 112.Google Scholar
  53. Dundon, J. M., and Goodkind, J. M. (1974). Phys. Rev. Lett. 32, 1343.ADSCrossRefGoogle Scholar
  54. Dundon, J. M., Stolfa, D. L., and Goodkind, J. M. (1973). Phys. Rev. Lett. 30, 843.ADSCrossRefGoogle Scholar
  55. Ebner, C., and Edwards, E. O. (1971). Phys. Rep. 2C, 77.ADSCrossRefGoogle Scholar
  56. Edwards, D. O., and Daunt, J. G. (1961). Phys. Rev. 124, 640.ADSCrossRefGoogle Scholar
  57. Edwards, D. O., Feder, J. D., Gully, W. J., Ihas, G. G., Landau, J., and Muething, K. A. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8 39, p. 260.Google Scholar
  58. Ehnholm, G. J., Ekstrom, J. P. Jacquinot, J. F., Loponen, M. T., Lounasmaa, O. V., and Soini, J. K. (1979). Phys. Rev. Lett. 42, 1702.ADSCrossRefGoogle Scholar
  59. Ehnholm, G. J., Ekstrom, J. P., Jacquinot, J. F., Loponen, M. T., Lounasmaa, O. V., and Soini, J. K. (1980). J. Low Temp. Phys., to be published.Google Scholar
  60. Esel’son, B. N., Lazarev, B. G., and Shvets, A. D. (1963). Cryogenics 3, 203.Google Scholar
  61. Frossati, G. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8 39, 1578.Google Scholar
  62. Frossati, G., Godfrin, H., Hebral, B., Schumacher, G., and Thoulouze, D. (1978a). Physics at Ultralow Temperatures. Physical Society of Japan, p. 205.Google Scholar
  63. Frossati, G., Hebral, B., Schumacher, G., and Thoulouze, D. (1978b). Cryogenics 18, 277.CrossRefGoogle Scholar
  64. Frossati, G., Schumacher, G., and Thoulouze, D. (1975). Proc. 14th Int. Conf. on Low Temp. Phys. North-Holland Publishing Co., Amsterdam, Vol. 4, p. 13.Google Scholar
  65. Frossati, G., and Thoulouze, D. (1976). Proc. 6th Int. Cryog. Eng. Conf., IPC Science and Technology Press, Guildford, p. 116.Google Scholar
  66. Gates, J. V., and Potter, W. H. (1975). Proc. 14th Int. Conf. on Low Temp. Phys., North-Holland Publishing Co., Amsterdam, Vol. 4, p. 5.Google Scholar
  67. Giauque, W. F. (1927). J. Am. Chem. Soc. 49, 1870.CrossRefGoogle Scholar
  68. Giauque, W. F., and MacDougall, D. P. (1933). Phys. Rev. 43, 768.ADSCrossRefGoogle Scholar
  69. Gibbons, R. M., and McKinley, C. (1967). Adv. Cryog. Eng. 13, 375;Google Scholar
  70. Gibbons, R. M., and Nathan, D. I. (1967). Technical Report AFML-TR-67–175, Wright-Patterson Air Force Base.Google Scholar
  71. Gladun, A., and Peshkov, V. P. (1972). Zh. Eksp. Teor. Fiz. 62, 1853Google Scholar
  72. Gladun, A., and Peshkov, V. P. (1972) Sov. Phys. JETP 35, 965.ADSGoogle Scholar
  73. Goldman, M. (1977). Phys. Rep. 32C, 1.ADSCrossRefGoogle Scholar
  74. Gorter, C. J. (1934). In a remark following a paper by P. Debye, Phys. Z. 35, 923.Google Scholar
  75. Greywall, D. S. (1976). Phys. Rev. Lett. 37, 105.ADSCrossRefGoogle Scholar
  76. Guyeer, R. A. (1978). J. Low Temp. Phys. 30, 1.ADSCrossRefGoogle Scholar
  77. Gylling, R. G. (1971). Acta Polytechnica Scandinavica No. Ph81.Google Scholar
  78. Hall, H. E., Ford, P. J., and Thompson, K. (1966). Cryogenics 6, 80.CrossRefGoogle Scholar
  79. Halperin, W. P., Rasmussen, F. B., Archie, C. N., and Richardson, R. C. (1978). J. Low Temp. Phys. 31, 617.ADSCrossRefGoogle Scholar
  80. Harrison, J. P. (1980). J. Low Temp. Phys. 37, 467.ADSCrossRefGoogle Scholar
  81. Heer, C. V., Barnes, C. B., and Daunt, J. B. (1954). Rev. Sci. Instrum. 25, 1088.ADSCrossRefGoogle Scholar
  82. Heterington, J. H., Mullin, W. J., and Nosanow, L. H. (1967). Phys. Rev. 154, 175.ADSCrossRefGoogle Scholar
  83. Hobden, M. V., and Kurti, N. (1959). Phil. Mag. 4, 1092.ADSCrossRefGoogle Scholar
  84. Hudson, R. P. (1970). Proc. 1970 Ultralow Temperature Symposium, NRL Report 7133, p. 3.Google Scholar
  85. Hudson, R. P. (1972). Principles and Application of Magnetic Cooling. North-Holland Publishing Co., Amsterdam.Google Scholar
  86. Huiskamp, W. J., and Lounasmaa, O. V. (1973). Rep. Prog. Phys. 36, 423.ADSCrossRefGoogle Scholar
  87. Hunik, R., Bongers, E., Konter, J. A., and Huiskamp, W. J. (1978b). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8 39, 1155.Google Scholar
  88. Hunik, R., Konter, J. A., and Huiskamp, W. J. (1978a). Proc. ULT Hakone Symposium, Physics at Ultralow Temperatures. Physical Society of Japan, p. 287.Google Scholar
  89. Ifft, E. M., Edwards, D. O., Sarwinski, R. E., and Skertic, M. M. (1967). Phys. Rev. Lett. 19, 831;ADSCrossRefGoogle Scholar
  90. Edwards, D. O., Ifft, E. M., and Sarwinski, R. E. (1969). Phys. Rev. 177, 380.ADSCrossRefGoogle Scholar
  91. Johnson, R. T., and Wheatley, J. C. (1970). J. Low Temp. Phys. 2, 423.ADSCrossRefGoogle Scholar
  92. Jurriens, R. G., Pennings, N. H., Satoh, T., Taconis, K. W., and de Bruyn Ouboter, R. (1978). in Physics at Ultralow Temperatures, Physical Society of Japan, p. 226.Google Scholar
  93. Kalvius, G. M., Katila, J. E., and Lounasmaa, O. V. (1969). Mössbauer Effect Methodology (I. Gruverman, ed.) Plenum Press, New York, Vol. 5, p. 231.Google Scholar
  94. Keller, W. E. (1969). Helium-3 and Helium-A. Plenum Press, New York.Google Scholar
  95. Kerley, N. W. (1978). in Advances in Refrigeration at the Lowest Temperatures. International Institute of Refrigeration Comm. Al-2, p. 159.Google Scholar
  96. Kittel, P. (1980). Cryogenics, to be published.Google Scholar
  97. Korringa, J. (1950). Physica 16, 601.ADSMATHCrossRefGoogle Scholar
  98. Kraus, J., Uhlig, E., and Wiedemann, W. (1974). Cryogenics 14, 29.CrossRefGoogle Scholar
  99. Kummer, R. B., Mueller, R. M., and Adams, E. D. (1977). J. Low Temp. Phys. 27, 319.ADSCrossRefGoogle Scholar
  100. Kurti, N. (1967). Contemp. Phys. 8, 21.ADSCrossRefGoogle Scholar
  101. Kutri, N., Robinson, F. N. H., Simon, F. E., and Spohr, D. A. (1956). Nature 178, 450.ADSCrossRefGoogle Scholar
  102. Kurti, N., and Simon, F. E. (1935). Proc. Roy. Soc. A149, 152.ADSGoogle Scholar
  103. Landau, L. D., and Lifshitz, E. M. (1968). Statistical Physics, Pergamon Press, Oxford.Google Scholar
  104. Landau, L. D., and Pomeranchuk, I. (1948). Dokl. Akad. Nauk. SSSR 59, 669;Google Scholar
  105. Pomeranchuk, I. (1949). Zh. Eksperim. Teor. Fiz. 19, 42.Google Scholar
  106. Locatelli, M., Arnaud, D., and Routin, M. (1976). Cryogenics 16, 374.CrossRefGoogle Scholar
  107. London, H. (1951). Proc. Int. Conf. Low Temp. Phys., Oxford, Clarendon Lab., p. 157.Google Scholar
  108. London, H., Clarke, G. R., and Mendoza, E. (1962). Phys. Rev. 128, 1992.ADSCrossRefGoogle Scholar
  109. Lounasmaa, O. V. (1974). Experimental Principles and Methods Below 1K. Academic Press, London.Google Scholar
  110. Lounasmaa, O. V. (1979). Physics Today 32(12), 32.ADSCrossRefGoogle Scholar
  111. Lounasmaa, O. V. (1983). Private Communication.Google Scholar
  112. March, R. H., and Symko, O. G. (1965). Proc. Grenoble Conf., International Inst, of Refrigeration, Annexe 1965, 2, p. 27.Google Scholar
  113. Mate, C. F., Harris-Lowe, R., Davis, W. L., and Daunt, J. G. (1965). Rev. Sci. Instrum. 36, 369.ADSCrossRefGoogle Scholar
  114. McAshan, M. S. (1976). 6th Int. Cryog. Eng. Conf. IPC Science and Technology Press, Guildford, England, p. 3.Google Scholar
  115. Mendoza, E. (1961). Trang Experimental Cryophysics, (ed. F. E. Hoare, L. C. Jackson, and N. Kurtii), Chap. 8.Google Scholar
  116. Mueller, R. M., Buchal, Chr., Folle, H. R., Kubota, M., and Pobell, F. (1980). Cryogenics 20, 395.ADSCrossRefGoogle Scholar
  117. Neganov, B., Borisov, N., and Libury, M. (1966). Zh. Eksp. Teor. Fiz. 50, 1445Google Scholar
  118. Neganov, B., Borisov, N., and Libury, M. Sov. Phys. JETP 23, 959 (1966).ADSGoogle Scholar
  119. Niinikoski, T. O. (1971). Nucl. Instrum. Methods 97, 95.ADSCrossRefGoogle Scholar
  120. Niinikoski, T. O. (1976). 6th Int. Cryog. Eng. Conf., IPC Science and Technology Press, Guildford, p. 102.Google Scholar
  121. Nosanow, L. H., and Mullin, W. J. (1965). Phys. Rev. Lett. 14, 133.ADSCrossRefGoogle Scholar
  122. Ono, K., Kobayasi, S., Shinohara, M., Asahi, K., Ishimoto, H., Nishida, N., Imaizumi, M., Nakaizumi, A., Ray, J., Iseki, Y., Takayanagi, S., Tenuri, K., and Sugawars, T. (1980). J. Low Temp. Phys. 38, 737.ADSCrossRefGoogle Scholar
  123. Osgood, E. B., and Goodkind, J. M. (1966). Cryogenics 6, 54.ADSCrossRefGoogle Scholar
  124. Osgood, E. B., and Goodkind, J. M. (1967). Phys. Rev. Lett. 18, 894.ADSCrossRefGoogle Scholar
  125. Osheroff, D. D., Richardson, R. C., and Lee, D. M. (1972). Phys. Rev. Lett. 28, 885.ADSCrossRefGoogle Scholar
  126. Osheroff, D. D., and Sprenger, W. O. (1980). Private Communication from D. D. Osheroflf.Google Scholar
  127. Ostermeier, R. M., Nolt, I. G., and Radostitz, J. V. (1978). Cryogenics 18, 83.ADSCrossRefGoogle Scholar
  128. Pavlov, V. N., Neganov, B. S., Konicek, J., and Ota, J. (1978). Cryogenics 18, 115.CrossRefGoogle Scholar
  129. Pennings, N. H., Taconis, K. W., and de Bruyn Ouboter, L. (1974). Cryogenics 14, 53.CrossRefGoogle Scholar
  130. Pomeranchuk, I. (1950). Zh. Eksp. Teor. Fiz. 20, 919.Google Scholar
  131. Radebaugh, R. (1967). NBS Tech. Note 362.Google Scholar
  132. Radebaugh, R. (1977). J. Low Temp. Phys. 27, 91.ADSCrossRefGoogle Scholar
  133. Radebaugh, R., and Siegwarth, J. D. (1971). Cryogenics 11, 368.CrossRefGoogle Scholar
  134. Radebaugh, R., and Siegwarth, J. D. (1971). Proc. 12th Int. Conf. on Low Temp. Phys., Academic Press of Japan, p. 163.Google Scholar
  135. Radebaugh, R., and Siegwarth, J. D. (1974). Proc. 13th Int. Conf. on Low Temp. Phys., Plenum Press, New York, Vol. 1, p. 401.Google Scholar
  136. Radostitz, J. V., Nolt, I. G., Kittel, P., and Donnelly, R. J. (1978). Rev. Sci. Instrum. 49, 86.ADSCrossRefGoogle Scholar
  137. Reich, H. A., and Garwin, R. L. (1959). Rev. Sci. Instrum. 30, 7.ADSCrossRefGoogle Scholar
  138. Roberts, T. R., and Sydoriak, S. G. (1955). Phys. Rev. 98, 1672.ADSCrossRefGoogle Scholar
  139. Roinel, Y., Bouffard, V., Bacchella, G. L., Pinot, M., Meriel, P., Roubeau, P., Avenel, O., Goldman, M., and Abragam, A. (1978). Phys. Rev. Lett. 41, 1572.ADSCrossRefGoogle Scholar
  140. Rosenblum, R. S., Sheinberg, H., and Steyert, W. A. (1976). Cryogenics 16, 245.CrossRefGoogle Scholar
  141. Satoh, T., Jurriens, R. G., Taconis, K. W., and de Bruyn Ouboter, R. (1974). Physica 77, 523.ADSCrossRefGoogle Scholar
  142. Scribner, R. A., Panczyk, M. F., and Adams, E. D. (1969). J. Low Temp. Phys. 1, 313.ADSCrossRefGoogle Scholar
  143. Seidel, G., and Keesom, P. H. (1958). Rev. Sci. Instrum. 29, 606.ADSCrossRefGoogle Scholar
  144. Severiyns, A. P., and Staas, A. P. (1978). in Advances in Refrigeration at the Lowest Temperatures, International Institute of Refrigeration, Comm. Al-2, p. 175.Google Scholar
  145. Severijns, A. P., Staas, F. A., and Cense, W. A. (1978). Cryogenics 18, 87.CrossRefGoogle Scholar
  146. Siegwarth, J. D., and Radebaugh, R. (1971). Rev. Sci. Instrum. 42, 1111.ADSCrossRefGoogle Scholar
  147. Siegwarth, J. D., and Radebaugh, R. (1972). Rev. Sci. Instrum. 43, 197.ADSCrossRefGoogle Scholar
  148. Sites, J. R., Osheroff, D. D., Richardson, R. C., and Lee, D. M. (1969). Phys. Rev. Lett. 23, 836.ADSCrossRefGoogle Scholar
  149. Sites, J. R., Smith, H. A., and Steyert, W. A. (1971). J. Low Temp. Phys. 4, 605.ADSCrossRefGoogle Scholar
  150. Smith, E. N., Bozler, H. M., Truscott, W. S., Richardson, R. C., and Lee, D. M. (1975). Proc. 14th Int. Conf. Low Temp. Phys. North-Holland Publishing Co., Amsterdam, Vol. 4, p. 9.Google Scholar
  151. Staas, F. A. (1976). Philips Tech. Rev. 36, 104.Google Scholar
  152. Staas, F. A., Severijns, A. P., and Van Der Waerden, H. C. M. (1975). Phys. Letters 53A, 327.ADSGoogle Scholar
  153. Sydoriak, S. G., Mills, R. L., and Grilly, E. R. (1960). Phys. Rev. Lett. 4, 495;ADSCrossRefGoogle Scholar
  154. Mills, R. L., Grilly, E. R., and Sydoriak, S. G. (1961). Ann. Phys. (N.Y.) 12, 41.ADSCrossRefGoogle Scholar
  155. Symko, O. G. (1969). J. Low Temp. Phys. 1, 451.ADSCrossRefGoogle Scholar
  156. Taconis, K. W. (1961). Progress in Low-Temperature Physics, Vol. III (ed. C. J. Gorter), North-Holland Publishing Co., Amsterdam, Chapter 5.Google Scholar
  157. Taconis, K. W., Pennings, N. H., Das, P., and de Bruyn Ouboter, R. (1971). Physica 56, 168.ADSCrossRefGoogle Scholar
  158. Torre, J. P., and Chanin, G. (1978). Adv. Cryog. Eng. 23, 640.Google Scholar
  159. van der Boog, A. G. M., Husson, L. P. J., and Kramers, H. C. (1978). Physics Lett. 66A, 305.ADSCrossRefGoogle Scholar
  160. Varoquaux, E. (1978). Proc. LT15, J. Phys. (Paris) Colloq. C6, Suppl. No. 8, 39, 1605.Google Scholar
  161. Veuro, M. C. (1978). Acta Polytechnica Scandinavica No. Ph. 122.Google Scholar
  162. Vilches, O. E., and Wheatley, J. C. (1967). Phys. Lett. 24A, 440.ADSGoogle Scholar
  163. Vvedenskii, V. L., and Peshkov, V. P. (1972). Zh. Eksp. Teor. Fiz. 63, 1363Google Scholar
  164. Vvedenskii, V. L., and Peshkov, V. P. Sov. Phys. JETP 36, 721 (1973).ADSGoogle Scholar
  165. Walters, G. K., and Fairbank, W. M. (1956). Phys. Rev. 103, 262.ADSCrossRefGoogle Scholar
  166. Walton, D. (1966). Rev. Sci. Instrum. 37, 734 (1966).ADSCrossRefGoogle Scholar
  167. Walton, D., Timsuk, J., and Sievers, A. J. (1971). Rev. Sci. Instrum. 42, 1265.ADSCrossRefGoogle Scholar
  168. Webb, R. A., Greytak, T. J., Johnson, R. T., and Wheatley, J. C. (1973). Phys. Rev. Lett. 30, 210.ADSCrossRefGoogle Scholar
  169. Weiss, P. (1921). J. Phys. (Paris) Ser. 6, No. 2, 161.Google Scholar
  170. Weiss, P., and Piccard, A. (1918). C.R. Acad. Sci. (Paris) 166, 352.Google Scholar
  171. Wheatley, J. C. (1966). Trang in Proceedings of the Sussex University Symposium on Quantum Fluids (ed. D. T. Brewer), North-Holland, Amsterdam, p. 183.Google Scholar
  172. Wheatley, J. A., Rapp, R. E., and Johnson, R. J. (1971). J. Low Temp. Phys. 4, 1.ADSCrossRefGoogle Scholar
  173. Wheatley, J. A., Viehes, O. E., and Abel, W. R. (1968). Physics 4, 1.Google Scholar
  174. Wilkes, W. R. (1972). Cryogenics 12, 180.CrossRefGoogle Scholar
  175. Yamamoto, J. (1975). Japan. J. Appl. Phys. 14, 1807.ADSCrossRefGoogle Scholar
  176. Zinov’eva, K. N. (1958). Zh. Eksp. Teor. Fiz. 34, 609Google Scholar
  177. Zinov’eva, K. N. (1958). Sov. Phys. JETP 7, 421.Google Scholar
  178. Zinov’eva, K. N., and Peshkov, N. P. (1959). Zh. Eksp. Teor. Fiz. 37, 33Google Scholar
  179. Zinov’eva, K. N., and Peshkov, N. P. (1959). Sov. Phys. JETP 10, 22.Google Scholar
  180. Zimmerman, J. E., McNutt, J. D., and Bohmn, H. V. (1962). Cryogenics 2, 153.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Ray Radebaugh
    • 1
  1. 1.Thermophysical Properties DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations