Cryocoolers pp 129-175 | Cite as

Fundamentals of Alternate Cooling Systems

  • Ray Radebaugh
Part of the The International Cryogenics Monograph Series book series (ICMS)


In spite of great scientific strides over the last century, the refrigeration principles used today are, for the most part, the same as those used for the last century. These principles were refined between the period of the first liquefaction of air in 1877 by Cailletet and Pictet and the first liquefaction of helium by Onnes in 1908. The mechanical work required for these gas systems presents difficult engineering problems. However, considerable engineering progress has been made since that time so that such cryogenic refrigerators or liquefiers have moved from the category of laboratory devices to industrial machines. Still further engineering strides are needed to make such refrigerators sufficiently reliable, inexpensive, and efficient to be used regularly for many other potential application areas.


Entropy Change Generalize Force Refrigeration System Dilution Refrigerator Refrigeration Cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barclay, J. A., Steyert, W. A., and Zrudsky, D. R. (1979). Proc. XVth Int. Congress of Refrig. Google Scholar
  2. Baumgartner, H. (1950). Helv. Phys. Acta 23, 651.Google Scholar
  3. Betts, D. S. (1976). Refrigeration and Thermometry below One Kelvin. Sussex University Press.Google Scholar
  4. Blinc, R. and Zeks, B. (1974). Soft Modes in Ferroelectrics and Antiferroelectrics, Selected Topics in Solid State Physics, Vol. 13, North-Holland, New York.Google Scholar
  5. Brown, G. V. (1976). J. Appl. Phys. 47.Google Scholar
  6. Brown, G. V. (1979). See Phys. Today June, 18.Google Scholar
  7. Buist, R. J., Fenton, J. W., and Tuomi, D. (1971). “Low Temperature Cooler for 145 K Operation.” U.S. Army Night Vision Laboratories, Fort Belvoir, Virginia, Technical Report AD888757L (Borg-Warner Thermoelectrics).Google Scholar
  8. Buist, R. J. (1974). “Feasibility Study for a High Power Low Temperature Thermoelectric Cooler.” U.S. Army Night Vision Laboratories, Fort Belvoir, Virginia, Technical Report ADB002643 (Borg-Warner Thermoelectrics).Google Scholar
  9. Buist, R. J., Fenton, J., Lichniak, G., and Norton, P. (1976). “Low Temperature Thermoelectric Cooler for 145 K Detector Array Package.” U.S. Army Night Vision Laboratories, Fort Belvoir, Virginia, Technical Report ADB008934 (Borg-Warner Thermoelectrics).Google Scholar
  10. Click, P. B., Jr., and Marlow, R. (1970). “Low Temperature Thermoelectric Cooler for Operation at 145 K”. U.S. Army Night Vision Laboratories, Fort Belvoir, Virginia, Technical Report AD875928 (Nuclear Systems, Inc.).Google Scholar
  11. Colwell, J. H., Gill, E. K., and Morrison, J. A. (1962). J. Chem. Phys. 36, 2223.ADSCrossRefGoogle Scholar
  12. Daunt, J. G. (1970). “Preliminary Thermodynamic Data for the Inversion Curve of He3.” Cryogenics 10, 473.CrossRefGoogle Scholar
  13. Drullinger, R. E., and Wineland, D. J. (1979).Laser Spectroscopy IV. ed. by H. Walther and K. W. Rothe, Springer-Verlag, Heidelberg, (1979), p. 66.Google Scholar
  14. Dugdale, J. S., and Franck, J. P. (1964). Phil. Tans. R. Soc. 257, 1.ADSCrossRefGoogle Scholar
  15. Fisher, R. A., Hornung, E. W., Brodale, G. E., and Giauque, W. F. (1973). J. Chem. Phys. 58, 5584.ADSCrossRefGoogle Scholar
  16. Franck, A., and Clusius, K. (1937). Z. Physik. Chem. B36, 291.Google Scholar
  17. Frossati, G., Godfrin, H., Hebral, B., Schumacher, G., and Thoulouze, D. (1978).In Physics at Ultralow Temperatures, (Physical Society of Japan, p. 205.Google Scholar
  18. Giauque, W. F., and Clayton, J. O. (1933). J. Am. Chem. Soc. 55, 4875.CrossRefGoogle Scholar
  19. Giauque, W. F., Fisher, R. A., Hornung, E. W., and Brodale, G. E. (1973). J. Chem. Phys. 58, 262.CrossRefGoogle Scholar
  20. Gibbons, R. M., and McKinley, C. (1968). Adv. Cryog. Eng. 13, 375.Google Scholar
  21. Gibbons, R. M., and Nathan, D. I. (1967). AFML-TR-67–175.Google Scholar
  22. Gifford, W. E., and Longsworth, R. C. (1966a). “Surface Heat Pumping”. Adv. Cryog. Eng. 11, 171.Google Scholar
  23. Gifford, W. E., and Longsworth, R. C. (1966b). “Pulse-Tube Refrigeration Progress”. Adv. Cryog. Eng. 10B, 69.Google Scholar
  24. Goldsmid, H. J. (1964). Thermoelectric Refrigeration. Plenum Press, New York.Google Scholar
  25. Goodstein, D. (1979). Private Communication.Google Scholar
  26. Goodwin, R. D. (1973). NBSIR 73–342.Google Scholar
  27. Gordian Associated. (1978). “Heat Pump Technology.” U. S. Dept. of Energy Report HCP/M2121–01.Google Scholar
  28. Gränicher, H. (1956). Helv. Phys. Acta 29, 210.Google Scholar
  29. Hänsch, T. W., and Schawlow, A. L. (1975). Opt Commun. 13, 68.ADSCrossRefGoogle Scholar
  30. Hartwig, W. H. (1978).in Applications of Closed-Cycle Cryocoolers to Small Superconducting Devices, NBS Special Publication 508, p. 135.Google Scholar
  31. Hegenbarth, E. (1961). Phys. Status Solidi 8, 59.CrossRefGoogle Scholar
  32. Jackson, C. M., Wagner, H. J., and Wasilewski, R. J. (1972). NASA-SP5110.Google Scholar
  33. Johnson, V. J. (1960). WADD Tech Tech. Report 60–56, Part I.Google Scholar
  34. Jona, F. and Shirane, G. (1962). Ferroelectric Crystals. Macmillan, New York, p. 251,Google Scholar
  35. Kanzig, W., Hart, H. R., Jr., and Roberts, S. (1964). Phys. Rev. Lett. 13, 543.ADSCrossRefGoogle Scholar
  36. Kikuchi, A., and Sawaguchi, E. (1964). J. Phys. Soc. Jpn 19, 1497.ADSCrossRefGoogle Scholar
  37. Kobeko, P., and Kurtschatov, J. (1930). Zt. Phys. 66, 192.ADSCrossRefGoogle Scholar
  38. Korrovits, V. K., Luud’ya, G. G., and Mikhkelsoo, V. T. (1974). “Thermostating Crystals at Temperatures Below 1 K by Using the Electrocaloric Effect.” Cryogenics 14, 44.CrossRefGoogle Scholar
  39. Kuhn, U., and Lüty, F. (1965). Solid State Commun. 4, 31.ADSCrossRefGoogle Scholar
  40. Lechner, R. A., and Ackermann, R. A. (1973). “Concentric Pulse Tube Analysis and Design.” Adv. Cryog. Eng. 18, 467.Google Scholar
  41. London, H. (1951). Proc. of the Int. Conf. on Low Temp. Phys., Oxford, p. 157.Google Scholar
  42. MacDonald, D. K. C. (1962). Thermoelectricity: An Introduction to the Principles. John Wiley & Sons, New York, p. 84.MATHGoogle Scholar
  43. McCarty, R. D. (1972). NBS Tech. Note 631.Google Scholar
  44. McCarty, R. D. (1975). NASA SP-3089.Google Scholar
  45. McCormick, J. E., and Brauer, J. B. (1965). Adv. Cryog. Eng. 10A, 493.Google Scholar
  46. Melton, R. G., Paterson, J. L., and Kaplan, S. B. J. Low Temp. Phys. (1980).Google Scholar
  47. Nesselmann, K. (1957). Chem. Eng. Tech. 29, 198.Google Scholar
  48. Neuhauser, W., Hohenstatt, M., Toschek, P., and Dehmelt, H. (1979).Laser Spectroscopy IV. (Ed. H. Walther and K. W. Rothe), Springer-Verlag, Heidelberg, p. 73.Google Scholar
  49. Pohl, R. D., Taylor, V. L., and Govban, W. M. (1969). Phys. Rev. 178, 1431.ADSCrossRefGoogle Scholar
  50. Pratt, W. P., Jr., Rosenblum, S. S., Steyert, W. A., and Barclay, J. A. (1977). “A Continuous Demagnetization Refrigerator Operating Near 2K and a Study of Magnetic Refrigerants.” Cryogenics 17, 689.CrossRefGoogle Scholar
  51. Radebaugh, R. (1967). NBS Tech. Note 362.Google Scholar
  52. Radebaugh, R. J. (1977). J. Low Temp. Phys. 27, 91.ADSCrossRefGoogle Scholar
  53. Radebaugh, R., Lawless, W. N., Siegwarth, J. D., and Morrow, A. J. (1979). Cryogenics 19, 187.CrossRefGoogle Scholar
  54. Shepherd, I. W., and Feher, G. (1967). J. Phys. Chem. Solids 28, 2027.ADSCrossRefGoogle Scholar
  55. Siegwarth, J. D., and Morrow, A. J. (1976). J. Appl. Phys. 47, 4784.ADSCrossRefGoogle Scholar
  56. Steyert, W. A. (1978a). In Applications of Closed-Cycle Cryocoolers to Small Superconducting Devices, NBS Special Publication 508, p. 81;Google Scholar
  57. Steyert, W. A. (1978a). J. Appl. Phys. 49, 1227.ADSCrossRefGoogle Scholar
  58. Steyert, W. A. (1978b). J. Appl. Phys. 49, 1216.ADSCrossRefGoogle Scholar
  59. Strobridge, T. R. (1962). NBS Tech. Note 127.Google Scholar
  60. Strong, C. R. (1971). Sci. Am 224, 118, April.ADSGoogle Scholar
  61. Thacher, P. D. (1968). J. Appl. Phys. 39, 1996.ADSCrossRefGoogle Scholar
  62. Treloar, L. R. G. (1958). The Physics of Rubber Elasticity. Clarendon Press, Oxford.Google Scholar
  63. Van Geuns, J. R., Phillips Res. Rep. Suppl. No. 6 (Eindhoven, Netherlands).Google Scholar
  64. van Mal, H. H., and Mijnheer, A. (1972). 4th International Cryog. Eng. Conf.Google Scholar
  65. Van Wylen, G. J., and Sonntag, R. E. (1965). Fundamentals of Classical Thermodynamics. John Wiley and Sons, New York, p. 590.Google Scholar
  66. Walker, G., and Metwally, M. (1977). Trans. A.S.M.E., J. Eng. Power 99, 284.CrossRefGoogle Scholar
  67. Weiss, P., and Forrer, R. (1926). Ann. Phys. (Paris) 5, 153.Google Scholar
  68. Weiss, P., and Piccard, A. (1918). C. R. Acad. Sci. Paris. 166, 352.Google Scholar
  69. Westrum, E. F., Jr. (1961). Pure Appl. Chem. 2, 241.CrossRefGoogle Scholar
  70. Wilks, J. (1967). The Properties of Liquid and Solid Helium. Clarendon Press, Oxford.Google Scholar
  71. Wineland, D. J., and Dehmelt, H. (1975). Bull. Am. Phys. Soc. 20, 637.Google Scholar
  72. Wineland D. J., and Drullinger, R. E. (1979). Proc. 6th Vavilov Conf. on Non-Linear Optics, Novosibirsk.Google Scholar
  73. Wolfe, R., and Smith, G. E. (1962). Appl. Phys. Lett. 1, 5.ADSCrossRefGoogle Scholar
  74. Woolley, H. W., Scott, R. B., and Brickwedde, F. G. (1948). J. Res. Nat. Bur. Stand. 41, 379.Google Scholar
  75. Yim, W. M., Fitzke, E. V., and Rosi, F. D. (1966). J. Mater. Sci. 1, 52.ADSCrossRefGoogle Scholar
  76. Yim, W. M., and Rosi, R. D. (1972). Solid-State Electron. 15, 1121.ADSCrossRefGoogle Scholar
  77. Yim, W. M., and Amith, A. (1972). Solid-State Electron. 15, 1141.ADSCrossRefGoogle Scholar
  78. Zemansky, M. W. (1957). Heat and Thermodynamics. 4th ed., McGraw-Hill, New York, p. 292.MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Ray Radebaugh
    • 1
  1. 1.Thermophysical Properties DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations