Cryocoolers pp 59-111 | Cite as

Some Aspects of Design

  • Graham Walker
Part of the The International Cryogenics Monograph Series book series (ICMS)


In the development of cryocoolers, highly competent engineering development teams have exercised great ingenuity and skill. Modern machines exemplify the present limits of manufacturing technology and design technique. It would be presumptuous to suggest that this single chapter could contain an adequate summary of that experience. Rather, we have attempted a cursory introduction to some of the more important and obvious areas of concern.


Molybdenum Disulfide Roller Bearing Cylinder Wall Piston Ring Balance Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bevan, T. (1946). The Theory of Machines. Longmans, Green, and Co. Ltd., London (see Chapter XIV, “Balancing”).Google Scholar
  2. Buchter, H. H. (1979). Industrial Sealing Technology. Wiley-Interscience, New York.Google Scholar
  3. Charkey, E. S. (1972). Electro Mechanical System Components. Wiley-Interscience, New York.Google Scholar
  4. Clarke, W. D. (1973). “Reliability and Maintainability of USAF Cryogenic Coolers.” Proc. Closed Cycle Cryogenic Cooler Conf., USAF Academy, Co. (Oct.), pp. 17–26, (AFFDL-TR-73–149, Vol. 1, No. 918234).Google Scholar
  5. Cooke-Yarborough, E. H., and Yeats, F. W. (1975). “Efficient Thermo-Mechanical Generation of Electricity from the Heat of Radioisotopes.” Proc. 10th I.E.C.E.C., Paper No. 759150, pp. 1003–1011, Newark, New Jersey.Google Scholar
  6. Crabtree, L. F. (1973). “Engineering—Art and Science.” Aerospace 3(7), 22–25.Google Scholar
  7. Fern, A. G., and Nau, B. S. (1976). Seals. Engineering Design Guides, No. 15, Oxford University Press, Oxford.Google Scholar
  8. Harkless, L. B. (1973). Reliability Test Results on V-M Coolers. Proc. Closed Cycle Cryogenic Cooler Conf., USAF Academy, Colorado, pp. 93–110 (AFFDL-TR-73–149, Vol. 1, A.D. No. 918234).Google Scholar
  9. Johnson, R. P., Bennett, A., Emigh, S. G., Griffith, W. R., Hoble, J. D., Penrome, R. E., and White, M. A. (1977). “Stirling-Hydraulic Artificial Heat Power Source.” Proc. 12th I.E.C.E.C., Paper No. 779016, pp. 104–111, Washington, D. C.Google Scholar
  10. Kapitza, P. (1934). “The Liquefaction of Helium by an Adiabatic Method.” Proc. R. Soc. London Ser. A 147, 189.ADSCrossRefGoogle Scholar
  11. Lindale, E. (1978). “Stirling Cycle Refrigerators for Gamma-Ray Detector.” Report No. PL-42-Cr78–0713, Johns Hopkins Univ., Applied Phys. Lab., Laurel, Maryland.Google Scholar
  12. Meijer, R. J. (1959). “The Philips Hot-Gas Engine with Rhombic Drive Mechanism.” Philips Tech. Rev. 20(9), 245–276.Google Scholar
  13. Meijer, R. J. (1959). “The Philips Thermal Engine.” Philips Res. Rep. Suppl. No. 1, Philips Research Labs, Eindhoven.Google Scholar
  14. Muller, H. J. (1964). “Improvements in Non-Lubricated Compressor Design.” Linde Rep. Sci. Technol. 6, 3–8.Google Scholar
  15. Muller, H. J. (1971). “Advances in Non-Lubricated Compressor Design.” Linde Rep. Sci. Technol. 17, 3–11.Google Scholar
  16. Pitcher, G. K. (1973). “Mechanical Life of Space Cryocoolers.” Proc. Closed Cycle Cryogenic Coolers Conf., USAF Academy, Colorado, pp. 211–224 (AFFDL-TR-73–149, Vol. 1, AD No. 918234).Google Scholar
  17. Pitcher, G. K. (1975). “Spacecraft Vuilleumier Cryogenic Refrigerator—Final Report.” AFFDL-TR-75–114, WPAFB, Philips Laboratories.Google Scholar
  18. Radziwill, W. (1969). “A Highly Efficient Small Brushless D.C. Motor.” Philips Tech. Rev. 30(1), 7–12.Google Scholar
  19. Robbins, R. F., Weitzel, D. H., and Herring, R. N. (1962). “The Application Behavior of Elastomers at Cryogenic Temperatures.” Adv. Cryog. Eng. 7, 343–352.Google Scholar
  20. Russo, S. C. (1976). “Study of a Vuilleumier Cycle Cryogenic Refrigerator for Detector Cooling on the Limb Scanning Infrared Radiometer.” NASA CR 145078 (Hughes Aircraft Co., Culver City, California).Google Scholar
  21. Schubert, R. (1971). “The Influence of a Gas Atmosphere and Moisture on Sliding Wear in PTFE Compositions.” Linde Rep. Sci. Technol. 17, 12–20.Google Scholar
  22. Sherman, A., Gasser, M., Goldowsky, M., Benson, G., and McCormick, J. (1979). “Progress on the Development of a 3–5 Year Lifetime Stirling Cycle Refrigerator for Space.” Cryogenic Engineering Conference, Madison, Wisconsin.Google Scholar
  23. Walker, G. (1980). Stirling Engines. Oxford University Press.Google Scholar
  24. Weitzel, D. H., Robbins, R. F., and Ludtke, P. R. (1965). “Elastomeric Seals and Materials at Cryogenic Temperatures.” Report No. ML-TDR-64–50, Pt. II, U.S. Air Force, Wright-Patterson Air Force Base, Ohio.Google Scholar
  25. Wigley, D. A. (1971). Mechanical Properties of Materials at Low Temperatures. Int. Cryogenics Monograph Series, Plenum Press, New York.Google Scholar
  26. Wigley, D. A. (1978). Properties of Materials at Low Temperature. Engineering Design Guides, No. 27, Oxford University Press, Oxford.Google Scholar
  27. Zimmerman, F. F., and Longsworth, R. C. (1971). “Shuttle Heat Transfer.” Adv. Cryog. Eng. 16, 342–351.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Graham Walker
    • 1
  1. 1.The University of CalgaryCalgaryCanada

Personalised recommendations