Brain Metabolic and Pathologic Consequences of Asphyxia

Role Played by Serum Glucose Concentration
  • Ronald E. Myers
  • Kenneth R. Wagner
  • Gabrielle M. de Courten-Myers


Asphyxia of the fetus during pregnancy or birth is a prominent cause of stillbirth and fetal brain injury. Perinatal asphyxia may fail to injure the fetal brain or it may injure it focally or diffusely, depending on the carbohydrate state of the fetus at the time of exposure, as related to its liver glycogen and serum glucose concentrations. In most instances, fetuses suffer from asphyxia as a consequence of physiologic or pathologic changes experienced by the mother. These include:
  1. 1.

    Maternal respiratory disturbances, including drowning, hanging, airway obstruction, pulmonary edema, anesthesia accidents, asphyxia, and paralysis of respiratory muscles.

  2. 2.

    Maternal circulatory disturbances, including shock states, cardiac arrest, and hypotension from hemorrhage.

  3. 3.

    Maternal toxic states, including carbon monoxide inhalation, and cyanide poisoning.

  4. 4.

    Nonspecific maternal stress states, such as marked anxiety.



Lactic Acid Brain Injury Mean Arterial Blood Pressure Glucose Solution Circulatory Arrest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Myers, R. E., 1979, Maternal anxiety and fetal death, in: PsychoNeuroEndocrinology in Reproduction (L. Zichella and P. Pancheri, eds.), p. 555, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  2. 2.
    Friedman, E. A., and Sachtleben, M. R., 1971, High-risk labor, J. Reprod. Med. 7:52.Google Scholar
  3. 3.
    Myers, R. E., 1975, Maternal psychological stress and fetal asphyxia: A study in the monkey, Am. J. Obstet. Gynecol. 122:47.PubMedGoogle Scholar
  4. 4.
    Myers, R. E., and Myers, S. E., 1979, Use of sedative, analgesic, and anesthetic drugs during labor and delivery: Bane or boon?, Am. J. Obstet. Gynecol. 133:83.PubMedGoogle Scholar
  5. 5.
    Myers, R. E., 1979, A unitary theory of causation of anoxic and hypoxic brain pathology, in: Cerebral Hypoxia and Its Consequences (S. Fahn, ed.), p. 195, Raven Press, New York.Google Scholar
  6. 6.
    Adams, R. D., and Victor, M., 1977, Principles of Neurology, McGraw-Hill, New York.Google Scholar
  7. 7.
    Fein, J. M., 1978, Brain energetics and cerebral death, Ann. N.Y. Acad. Sci. 315:97.PubMedGoogle Scholar
  8. 8.
    Opitz, E., and Schneider, M., 1950, Über die Sauerstoffversorgung des Gehirns und der Mechanismus von Mangelwirkungen, Ergeb. Physiol. 46:126.Google Scholar
  9. 9.
    Hossmann, K.-A., and Kleihues, P., 1973, Reversibility of ischemic brain damage, Arch. Neurol. 29:375.PubMedGoogle Scholar
  10. 10.
    Hossmann, K.-A., and Zimmerman, V., 1974, Resuscitation of the monkey brain after 1 H complete ischemia. I. Physiological and morphological observations, Brain Res. 81:59.PubMedGoogle Scholar
  11. 11.
    Rehncrona, S., Mela, L., and Chance, B. H., 1979, Cerebral energy state, mitochondrial function, and redox state measurements in transient ischemia, Fed. Proc. 38:2489.PubMedGoogle Scholar
  12. 12.
    Spielmeyer, W., 1922, Histopathologie des Nervous Systems, p. 74, Springer-Verlag, Berlin.Google Scholar
  13. 13.
    Brierley, J. B., Brown, A. W., and Meldrum, B. S., 1971, The nature and time course of the neuronal alterations resulting from oligemia and hypoglycemia in the brain of the Macaca mulattta, Brain Res. 25:483.Google Scholar
  14. 14.
    Schneider, M., 1963, Critical blood pressure in the cerebral circulation, in: Selective Vulnerability of the Brain in Hypoxemia (J. P. Schade and W. H. McMenemy, eds.), p. 17, F. A. Davis Company, Philadelphia.Google Scholar
  15. 15.
    Brierley, J. B., Meldrum, B. S., and Brown, A. W., 1973, The threshold and neuropathology of cerebral “anoxic-ischemic” cell change, Arch. Neurol. 29:367.PubMedGoogle Scholar
  16. 16.
    Miller, J. R., and Myers, R. E., 1970, Neurological effects of systemic circulatory arrest in the monkey, Neurology 20:715.PubMedGoogle Scholar
  17. 17.
    Miller, J. R., and Myers, R. E., 1972, Neuropathology of systemic circulatory arrest in adult monkeys, Neurology 22:888.PubMedGoogle Scholar
  18. 18.
    Myers, R. E., 1973, Two classes of dysergic brain abnormality and their conditions of occurrence, Arch. Neurol. 29:394.PubMedGoogle Scholar
  19. 19.
    Myers, R. E., 1974, Neuropathology of total oxygen lack (anoxia) in rhesus monkey, in: Pathology of Cerebral Microcirculation (J. Cervos-Navarro, ed.), p. 299, Walter de Gruyter, Berlin.Google Scholar
  20. 20.
    Myers, R. E., 1976, Anoxic brain pathology and blood glucose, Neurology 26:345.Google Scholar
  21. 21.
    Myers, R. E., and Yamaguchi, S., 1977, Nervous system effects of cardiac arrest in monkey: Preservation of vision, Arch. Neurol. 34:65.PubMedGoogle Scholar
  22. 22.
    Brockman, S. K., and Jude, J. R., 1960, The tolerance of the dog brain to total arrest of circulation, Bull. Johns Hopkins Hosp. 106:74.PubMedGoogle Scholar
  23. 23.
    Kaupp, H. A., Jr., Lazarus, R. E., Wetzel, N., et al., 1960, The role of cerebral edema in ischemic neuropathy after cardiac arrest in dogs and monkeys and its treatment with hypertonic urea, Surgery 48:404.PubMedGoogle Scholar
  24. 24.
    Marshall, S. B., Owens, J. C., and Swan, H., 1956, Temporary circulatory occlusion to the brain of the hypothermic dog, Arch. Surg. 72:98.Google Scholar
  25. 25.
    Neely, W. A., and Youmans, J. R., 1963, Anoxia of canine brain without damage, JAMA 183:1085.PubMedGoogle Scholar
  26. 26.
    Nemoto, E. M., Bleyaert, A. L., Stezoski, S. W., et al., 1977, Global brain ischemia: A reproducible monkey model, Stroke 8:558.PubMedGoogle Scholar
  27. 27.
    Wolin, L. R., Massopust, L. C., and Taslitz, N., 1971, Tolerance to arrest of cerebral circulation in the rhesus monkey, Exp. Neurol. 30:103.PubMedGoogle Scholar
  28. 28.
    Gray, F. D., and Horner, G. J., 1970, Survival following extreme hypoxemia, JAMA 211:1815.PubMedGoogle Scholar
  29. 29.
    Sandove, M. S., Yon, M. K., Hollinger, P. H., et al., 1961, Severe prolonged cerebral hypoxic episode with complete recovery, JAMA 175:1102.Google Scholar
  30. 30.
    Derbyshire, D. R., and Clark, R. G., 1980, Cerebral recovery after prolonged global brain ischemia, Lancet 2:637.PubMedGoogle Scholar
  31. 31.
    Montes, J. E., and Conn, A. W., 1980, Near-drowning: An unusual case, Can. Anaesth. Soc.J. 27:172.PubMedGoogle Scholar
  32. 32.
    Siebke, H., Breivik, H., Rod, T., et al., 1975, Survival after 40 minutes submersion without cerebral sequelae, Lancet 1:1275.PubMedGoogle Scholar
  33. 33.
    Hossmann, K.-A., and Olsson, Y., 1970, Supression and recovery of neuronal function in transient cerebral ischemia, Brain Res. 22:313.PubMedGoogle Scholar
  34. 34.
    Ariza-Herrera, D., Sodi-Pollares, D., Saenz-Arroyo, L., et al., 1971, The electrical activity of the heart and brain under acute experimental anoxia: The protective effect of polarizing solutions, Stroke 2:76.PubMedGoogle Scholar
  35. 35.
    Hearse, D. J., and Chain, E. B., 1972, The role of glucose in the survival and recovery of the anoxic isolated perfused rat heart, Biochem. J. 128:1125.PubMedGoogle Scholar
  36. 36.
    Takeda, J., Gabel, P. V., and Romney, S. L., 1966, Effects of maternal glucose loading upon induced fetal distress, Am. J. Obstet. Gynecol. 96:872.PubMedGoogle Scholar
  37. 37.
    Volpe, J. J., 1976, Perinatal hypoxic-ischemic brain injury, Pediat. Clin. N. Amer. 23:383.PubMedGoogle Scholar
  38. 38.
    Zakut, H., Mashiach, S., Blankstein, J., et al., 1975, Maternal and fetal response to rapid glucose loading in pregnancy and labor, Israel J. Med. Sci. 11:632.PubMedGoogle Scholar
  39. 39.
    Himwich, H. E., Fazekas, J. F., and Alexander, F. A. D., 1941, Hypoglycemia in the infant rat, Am. J. Physiol. 133:328.Google Scholar
  40. 40.
    Himwich, H. E., Bernstein, A. O., Herrlich, H., et al., 1942, Mechanisms for the maintenance of life in the newborn during anoxia, Am. J. Physiol. 135:387.Google Scholar
  41. 41.
    Britton, S. W., and Kline, R. F., 1945, Age, sex, carbohydrate, adrenal cortex and other factors in anoxia, Am. J. Physiol. 145:190.PubMedGoogle Scholar
  42. 42.
    Goodlin, R. C., and Lloyd, D., 1970, Use of drugs to protect against fetal asphyxia, Am. J. Obstet. Gynecol. 107:227.PubMedGoogle Scholar
  43. 43.
    Holowach-Thurston, J., Hauhart, R. E., and Jones, E. M., 1974, Anoxia in mice: Reduced glucose in brain with normal or elevated glucose in plasma and increased survival after glucose treatment, Pediatr. Res. 8:238.PubMedGoogle Scholar
  44. 44.
    Selle, W. A., 1944, Influence of glucose on the gasping pattern of young animals subjected to acute anoxia, Am. J. Physiol. 141:297.Google Scholar
  45. 45.
    Stafford, A., and Weatherall, J. A. C., 1960, The survival of young rats in nitrogen, J. Physiol. 153:457.PubMedGoogle Scholar
  46. 46.
    Austen, W. G., Greenberg, J. J., and Piccinini, J. C., 1965, Myocardial function and contractile force affected by glucose loading of the heart during anoxia, Surgery 57:839.PubMedGoogle Scholar
  47. 47.
    Gelli, M. G., Enhorning, G., Hultman, E., et al., 1968, Glucose infusion in the pregnant rabbit and its effect on glycogen content and activity of foetal heart under anoxia, Acta Paediatr. Scand. 57:209.PubMedGoogle Scholar
  48. 48.
    Hewitt, R. L., Lolley, D. M., Adrouny, G. A., et al., 1973, Protective effect of myocardial glycogen on cardiac function during anoxia, Surgery 73:444.PubMedGoogle Scholar
  49. 49.
    Scholle, S. G., and Griggs, D. M., 1975, Evidence for a beneficial effect of intravenous glucose on the hemodynamic response to acute asphyxia, Proc. Soc. Exp. Biol Med. 148:743.PubMedGoogle Scholar
  50. 50.
    Hewitt, R. L., Lolley, D. M., Adrouny G. A., et al., 1974, Protective effect of glycogen and glucose on the anoxic arrested heart, Surgery 75:1.PubMedGoogle Scholar
  51. 51.
    Petracek, M. R., Stevenson, R. L., Lewis, K. B., et al., 1970, Effect of hyperglycemia on cardiac tolerance to normothermic anoxic arrest during cardiopulmonary bypass in dogs, Ann. Surg. 172:1069.PubMedGoogle Scholar
  52. 52.
    Libby, P., Maroko, P. R., and Braunwald, E., 1975, The effect of hypoglycemia on myocardial ischemic injury during acute experimental coronary artery occlusion, Circulation 51:621.PubMedGoogle Scholar
  53. 53.
    Maroko, P. R., Libby, P., Sobel, B. E., et al., 1972, Effect of glucose-insulin-potassium infusion on myocardial infarction following experimental coronary artery occlusion, Circulation 45:1160.PubMedGoogle Scholar
  54. 54.
    Hill, A., and Volpe, J. J., 1981, Seizure, hypoxic-ischemic brain injury, and intraventricular hemorrhage in the newborn, Ann. Neurol. 10:109.PubMedGoogle Scholar
  55. 55.
    Adamsons, K., Jr., Behrman, R., Dawes, G. S., et al., 1963, The treatment of acidosis with alkali and glucose during asphyxia in fetal rhesus monkeys, J. Physiol. 169:679.PubMedGoogle Scholar
  56. 56.
    Dawes, G. S., Jacobson, H. N., Mott, J. C., et al., 1963, The treatment of asphyxiated, mature foetal lambs and rhesus monkeys with intravenous glucose and sodium carbonate, J. Physiol 169:167.PubMedGoogle Scholar
  57. 57.
    Dawes, G. S., Mott, J. C., Shelley, H. J., et al., 1963, The prolongation of survival time in asphyxiated immature foetal lambs, J. Physiol. 168:43.PubMedGoogle Scholar
  58. 58.
    Dawes, G. S., Hibbard, E., and Windle, W. F., 1964, The effect of alkali and glucose infusion on permanent brain damage in rhesus monkeys asphyxiated at birth, J. Pediatr. 65:801.PubMedGoogle Scholar
  59. 59.
    Romney, S. L., and Gabel, P. V., 1966, Maternal glucose loading in the management of fetal distress, Am. J. Obstet. Gynecol. 96:698.PubMedGoogle Scholar
  60. 60.
    Fiser, R. H., Erenberg, A., Fisher, D. A., et al., 1973, Blood gas and pH changes during glucose infusion in fetal sheep, Am. J. Obstet. Gynecol. 115:942.PubMedGoogle Scholar
  61. 61.
    Myers, R. E., and Hirsch, M., 1982, Use of glucose infusions during labor and delivery: Boon or bane?, Am. J. Obstet. Gynecol. (submitted).Google Scholar
  62. 62.
    Myers, R. E., 1979, Lactic acid accumulation as cause of brain edema and cerebral necrosis resulting from oxygen deprivation, in: Advances in Perinatal Neurology (R. Korobkin and C. Guilleminault, eds.), p. 85, Spectrum Publications, New York.Google Scholar
  63. 63.
    Myers, R. E., Wagner, K. R., and de Courten, G. M., 1980, Relevance of Claude Bernard’s work to understanding causation of asphyxia and brain injury in the fetus, in: Advances in Experimental Medicine: A Centenary Tribute to Claude Bernard (H. Parvez and S. Parvez, eds.), p. 289, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  64. 64.
    Myers, R. E., Wagner, K. R., and de Courten, G. M., 1981, Lactic acid accumulation in tissue as cause of brain injury and death in cardiogenic shock from asphyxia, in: Perinatal Biochemical Monitoring (N. H. Lauersen and H. M. Hochberg, eds.), p. 11, Williams and Wilkins, Baltimore.Google Scholar
  65. 65.
    Fajans, S. S., and Floyd, J. C., 1976, Fasting hypoglycemia in adults, N. Engl. J. Med. 294:766.PubMedGoogle Scholar
  66. 66.
    Merimee, T. J., and Tyson, J. E., 1974, Stabilization of plasma glucose during fasting: Normal variations in two separate studies, N. Engl. J. Med. 291:1275.PubMedGoogle Scholar
  67. 67.
    de Courten, G. M., Yamaguchi, S., Wagner, K. R., et al., 1980, Influence of carbohydrate state (recent food intake) upon brain pathologic response to oxygen deprivation in cats, J. Neuropathol. Exp. Neurol. 39:347.Google Scholar
  68. 68.
    de Courten, G. M., Yamaguchi, S., and Myers, R. E., 1981, Influence of serum glucose concentration on rapidity of circulatory failure during hypoxia and brain injury in cats, in: Cerebral Vascular Disease 3 (J. S. Meyer, M. Reivich, E. D. Ott, et al., eds.), p. 201, Excerpta Medica, Amsterdam.Google Scholar
  69. 69.
    Myers, R. E., 1977, Experimental models of perinatal brain damage: Relevance to human pathology, in: Intrauterine Asphyxia and the Developing Fetal Brain (L. Gluck, ed.), p. 37, Yearbook Publishing Company, New York.Google Scholar
  70. 70.
    Adams, J. H., Brierley, J. B., Conner, R. C. A., et al., 1966, The effects of systemic hypotension upon the human brain, Brain 89:235.PubMedGoogle Scholar
  71. 71.
    Romanul, F. C. A., and Abramowicz, A., 1964, Changes in brain and pial vessels in arterial border zones, Arch. Neurol. 11:40.PubMedGoogle Scholar
  72. 72.
    Gamache, F. W., and Dold, G. M., 1975, Alterations in cerebral blood flow produced by hypotension: A comparison of methods, J. Neurol. Neurosurg. Psychiatry 38:765.PubMedGoogle Scholar
  73. 73.
    Gamache, F. W., Myers, R. E., and Monell, E., 1976, Changes in local cerebral blood flow following profound systemic hypotension, J. Neurosurg. 44:215.PubMedGoogle Scholar
  74. 74.
    Myers, R. E., 1976, Response to comments of J. B. Brierley and B. S. Meldrum, Arch. Neurol. 33:306.Google Scholar
  75. 75.
    Ginsberg, M. D., and Myers, R. E., 1974, Experimental carbon monoxide encephalopathy in the primate. I. Physiological and metabolic aspects, Arch. Neurol. 30:202.PubMedGoogle Scholar
  76. 76.
    Ginsberg, M. D., and Myers, R. E., 1974, Experimental carbon monoxide encephalopathy in the primate. II. Clinical aspects, neuropathology, and physiological correlation, Arch. Neurol. 30:209.PubMedGoogle Scholar
  77. 77.
    Myers, R. E., 1972, Two patterns of perinatal brain damage and their conditions of occurrence, Am. J. Obstet. Gynecol. 112:246.PubMedGoogle Scholar
  78. 78.
    Myers, R. E., Kopf, G. S., and Mirvis, D. M., 1980, Hemodynamic response to profound hypoxia in the intact primate, Stroke 11:389.PubMedGoogle Scholar
  79. 79.
    Selkoe, D. J., and Myers, R. E., 1979, Neurologic and cardiovascular effects of hypotension in the monkey, Stroke 10:147.PubMedGoogle Scholar
  80. 80.
    de Courten-Myers, G. M., Yamaguchi, S., Wagner, K. R., et al., 1981, Effect of serum glucose concentration and fall in blood pressure on brain injury from marked hypoxia, Neurology, in press.Google Scholar
  81. 81.
    Gjedde, A., and Siemkowicz, E., 1978, Effect of glucose pretreatment on cerebral metabolic recovery after ischemia, Ann. Neurol. 4:166.Google Scholar
  82. 82.
    Siemkowicz, E., 1980, Improvement of restitution from cerebral ischemia in hyperglycemic rats by pentobarbital or diazepam, Acta Neurol. Scand. 61:368.PubMedGoogle Scholar
  83. 83.
    Siemkowicz, E., and Hansen, A. J., 1978, Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats, Acta Neurol. Scand. 58:1.PubMedGoogle Scholar
  84. 84.
    Pulsinelli, W., Waldman, S., Rawlinson, D., et al., 1980, The effect of fasting versus hyperglycemia on ischemic brain damage, Neurology 30:433.Google Scholar
  85. 85.
    Ginsberg, M. D., Welsh, F. A., and Budd, W. W., 1978, Effect of glucose infusion on the brain’s response to diffuse ischemia, Stroke 9:4.Google Scholar
  86. 86.
    Ginsberg, M. D., Welsh, F. A., and Budd, W. W., 1980, Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. I. Local cerebral blood flow and glucose utilization, Stroke 11:347.PubMedGoogle Scholar
  87. 87.
    Myers, R. E., and Yamaguchi, M., 1976, Effects of serum glucose concentration on brain response to circulatory arrest, J. Neuropathol. Exp. Neurol. 35:301.Google Scholar
  88. 88.
    Myers, R. E., 1981, High lactic acid not reduced ATP: Cause of brain injury from asphyxia, in: Cerebral Vascular Disease 3 (J. S. Meyer, M. Reivich, E. D. Ott, et al., eds.), p. 231, Excerpta Medica, Amsterdam.Google Scholar
  89. 89.
    Myers, R. E., 1981, Brain damage due to asphyxia: Mechanism of causation, J. Perinat. Med. 9:78.PubMedGoogle Scholar
  90. 90.
    Myers, R. E., 1975, Four patterns of perinatal brain damage and their conditions of occurrence in primates, Adv. Neurol. 10:223.PubMedGoogle Scholar
  91. 91.
    Wagner, K. R., and Myers, R. E., 1979, Topographic aspects of lactic acid accumulation in brain tissue during circulatory arrest, Neurology 29:546.Google Scholar
  92. 92.
    Myers, R. E., and Wagner, K. R., 1980, Metabolic basis for injury to brain stem in circulatory arrest, Stroke 11:127.Google Scholar
  93. 93.
    Wagner, K. R., and Myers, R. E., 1979, Relation between glycogen and glucose levels of brain structures and lactic acid accumulation during circulatory arrest, Soc. Neurosci. Abstr. 5:92.Google Scholar
  94. 94.
    Gilles, F. H., 1969, Hypotensive brain stem necrosis: Selective symmetrical necrosis of tegmental neuronal aggregates following cardiac arrest, Arch. Pathol. 88:32.PubMedGoogle Scholar
  95. 95.
    Rehncrona, S., 1980, Studies on biochemical mechanisms of irreversible cell damage in brain ischemia, thesis, Lund University, Lund, Sweden.Google Scholar
  96. 96.
    Rehncrona, S., Rosen, I., and Seisjo, B. K., 1980, Excessive cellular acidosis: An important mechanism of neuronal damage in the brain? Acta Physiol. Scand. 110:435PubMedGoogle Scholar
  97. 97.
    Rehncrona, S., Siesjo, B. K., and Smith, D. S., 1980, Reversible ischemia of the brain: Biochemical factors influencing restitution, Acta Physiol. Scand. (Suppl.) 492:135.Google Scholar
  98. 98.
    Welsh, F. A., Ginsberg, M. D., Reider, W., et al., 1980, Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolite levels, Stroke 11:355.PubMedGoogle Scholar
  99. 99.
    Friede, R. L., and van Houten, W. H., 1961, Relations between postmortem alterations and glycolytic metabolism in the brain, Exp. Neurol. 4:197.PubMedGoogle Scholar
  100. 100.
    Nordstrom, C.-H., Rehncrona, S., and Siesjo, B. K., 1976, Restitution of cerebral energy state after complete and incomplete ischemia of 30 minutes duration, Acta Physiol. Scand. 97:270.Google Scholar
  101. 101.
    Nordstrom, C.-H., Rehncrona, S., and Siesjo, B. K., 1978, Restitution of cerebral energy state, as well as of glycolytic intermediates, citric acid cycle intermediates and associated amino acids after 30 minutes of complete ischemia in rats anesthetized with nitrous oxide or phenobarbital, J. Neurochem. 30:479.PubMedGoogle Scholar
  102. 102.
    Marshall, L. F., Welsh, F., Durity, F., et al., 1975, Experimental cerebral oligemia and ischemia produced by intracranial hypertension. Part 3. Brain energy metabolism, J. Neurosurg. 43:323.PubMedGoogle Scholar
  103. 103.
    Steen, P. A., Michenfelder, J. D., and Milde, J. H., 1979, Incomplete versus complete cerebral ischemia: Improved outcome with a minimal blood flow, Ann. Neurol. 6:389.PubMedGoogle Scholar
  104. 104.
    Myers, R. E., de Courten, G. M., Yamaguchi, S., et al., 1980, Failure of marked hypoxia with maintained blood pressure to produce brain injury, J. Neuropathol. Exp. Neurol. 39:378.Google Scholar
  105. 105.
    Wagner, K. R., Brown, M. E., Yamaguchi, S., et al., 1980, Relation between mean arterial blood pressure, lactic acid accumulation, and brain injury from marked hypoxia in rhesus monkeys, Soc. Neurosci. Abstr. 6:130.Google Scholar
  106. 106.
    Brierley, J. B., 1979, Ischemic necrosis along brain arterial boundry zones: Some aspects of its etiology, Adv. Neurol. 26:155.PubMedGoogle Scholar
  107. 107.
    Brierley, J. B., Prior, P. F., Calverley, J., et al., 1978, Profound hypoxia in Papio anubis and Macaca mulatta—physiological and neuropathological effects. I. Abrupt exposure following normoxia. II. Abrupt exposure following moderate hypoxia, J. Neurol. Sci. 37:1.PubMedGoogle Scholar
  108. 108.
    Levy, D. E., Brierley, J. B., Silverman, D. G., et al., 1975, Brief hypoxia-ischemia initially damages cerebral neurons, Arch. Neurol. 32:450.PubMedGoogle Scholar
  109. 109.
    Salford, L. G., Plum, F., and Siesjo, B. K., 1973, Graded hypoxia—oligemia in rat brain. I. Biochemical alterations and their implications, Arch. Neurol. 29:227.PubMedGoogle Scholar
  110. 110.
    Salford, L. G., Plum, F., and Brierley, J. B., 1973, Graded hypoxia-oligemia in rat brain. II. Neuropathological alterations and their implications, Arch. Neurol. 29:234.PubMedGoogle Scholar
  111. 111.
    Vannucci, R. C., Nardis, E. E., Vannucci, S. J., et al., 1980, Tolerance of the perinatal brain to graded hypoxemia, Neurology 30:443.Google Scholar
  112. 112.
    Salford, L. G., and Siesjo, B. K., 1974, The influence of arterial hypoxia and unilateral carotid artery occulsion upon regional blood flow and metabolism in the rat brain, Acta Physiol. Scand. 92:130.PubMedGoogle Scholar
  113. 113.
    Blabbrough, A. E., Brierley, J. B., and Nicholson, A. N., 1973, Behavioural and neurologic disturbances associated with hypoxic brain damage, J. Neurol. Sci. 18:475.Google Scholar
  114. 114.
    Nicholson, A. N., Freeland, S. A., and Brierley, J. B., 1970, A behavioural and neuropathological study of the sequelae of profound hypoxia, Brain Res. 22:327.PubMedGoogle Scholar
  115. 115.
    Gamache, F. W., Dold, G. M., and Myers, R. E., 1975, Changes in cortical impedance and EEG activity induced by profound hypotension, Am. J. Physiol. 228:1914.PubMedGoogle Scholar
  116. 116.
    Kirshner, H. S., Blank, W. F., and Myers, R. E., 1975, Brain extracellular potassium activity during hypoxia in the cat, Neurology 25:1001.PubMedGoogle Scholar
  117. 117.
    Schutz, H., Silverstein, P. R., Vapalahti, M., et al., 1973, Brain mitochondrial function after ischemia and hypoxia. II. Normotensive systemic hypoxemia, Arch. Neurol. 29:417.PubMedGoogle Scholar
  118. 118.
    Schneider, M., 1961, Survival and revival of the brain in anoxia and ischemia, in: Cerebral Anoxia and the Electroencephalogram (H. Gastaut and J. S. Meyer, eds.), p. 134, Charles C. Thomas, Springfield, Ill.Google Scholar
  119. 119.
    Brown, J. K., Purvis, R. J., Forfar, J. O., et al., 1974, Neurological aspects of perinatal asphyxia, Dev. Med. Child Neurol. 16:567.PubMedGoogle Scholar
  120. 120.
    Rie, M. A., and Bernad, P. G., 1980, Prolonged hypoxia in man without circulatory compromise fails to demonstrate cerebral pathology, Neurology 30:443.Google Scholar
  121. 121.
    Duffy, T. E., Nelson, S. R., and Lowry, O. H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery, J. Neurochem. 19:959.PubMedGoogle Scholar
  122. 122.
    Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection, Am. J. Physiol. 221:1629.PubMedGoogle Scholar
  123. 123.
    Nemoto, E. M., and Severinghaus, J. W., 1974, Sterospecific permeability of rat blood—brain barrier to lactic acid, Stroke 5:81.PubMedGoogle Scholar
  124. 124.
    Gurdjian, E. S., Webster, J. E., and Stone, W. E., 1944, Cerebral metabolism in hypoxia, Arch. Neurol. Psychiatry 51:472.Google Scholar
  125. 125.
    Gurdjian, E. S., Webster, J. E., and Stone, W. E., 1949, Cerebral constituents in relation to blood gases, Am. J. Physiol. 156:149.PubMedGoogle Scholar
  126. 126.
    Schmahl, F. W., Betz, E., Dettingerm, E., et al., 1966, Energiestoffwechsel der Grosshirnrinde und Electroencephalogramm bei Sauerstoffmangel, Pflugers Arch. Ges. Physiol. 292:46.Google Scholar
  127. 127.
    Siesjo, B. K., 1980, Brain Energy Metabolism, John Wiley and Sons, Chichester.Google Scholar
  128. 128.
    Siesjo, B. K., and Nilsson, L., 1971, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in rat brain, Scand. J. Clin. Lab. Invest. 27:83.PubMedGoogle Scholar
  129. 129.
    Siesjo, B. K., Johannsson, H., Norberg, K., et al., 1975, Brain function, metabolism and blood flow in moderate and severe arterial hypoxia, in: Brain Work, Alfred Benzon Symposium VIII (D. H. Ingvar and N. A. Lassen, eds.), p. 101, Munksgaard, Kopenhamm.Google Scholar
  130. 130.
    Jobsis, F. F., 1979, Oxidative metabolic effects of cerebral hypoxia, Adv. Neurol. 26:299.PubMedGoogle Scholar
  131. 131.
    Rosenthal, M., Lamanna, J. C., Jobsis, F. F., et al., 1976, Effects of respiratory gases on cytochrome a in intact cerebral cortex: Is there a critical P02?, Brain Res. 108:143.PubMedGoogle Scholar
  132. 132.
    Siesjo, B. K., and Berntman, L., 1979, Cytoplasmic and mitochonorial redox changes in brain during hypoxia, Adv. Neurol. 26:319.PubMedGoogle Scholar
  133. 133.
    Kogure, K., Scheinberg, P., Utsunomiya, Y., et al., 1977, Sequential cerebral biochemical and physiological events in controlled hypoxemia, Ann. Neurol. 2:304.PubMedGoogle Scholar
  134. 134.
    Bachelard, H. S., Lewis, L. D., Ponten, O., et al., 1974, Mechanisms activating glycolysis in the brain in arterial hypoxia, J. Neurochem. 22:395.PubMedGoogle Scholar
  135. 135.
    Borgstrom, L., Norberg, K., and Siesjo, B. K., 1976, Glucose consumption in rat cerebral cortex in normoxia, hypoxia and hypercapnia, Acta Physiol. Scand. 96:569.PubMedGoogle Scholar
  136. 136.
    Pulsinelli, W. A., and Duffy, T. E., 1979, Local cerebral glucose metabolism during controlled hypoxemia in rats, Science 204:626.PubMedGoogle Scholar
  137. 137.
    Duffy, T. E., and Pulsinelli, W. A., 1979, Regional cerebral glucose metabolism during hypoxia, Adv. Neurol. 26:287.PubMedGoogle Scholar
  138. 138.
    Cohen, P. J., Alexander, S. C., Smith, T. C., et al., 1967, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man, J. Appl. Physiol. 23:183.PubMedGoogle Scholar
  139. 139.
    Pape, K. E., and Wigglesworth, J. S., 1979, Haemorrhage, Ischaemia, and the Perinatal Brain, in: Clinics in Developmental Medicine #69/70, William Heineman Medical Books Ltd., London.Google Scholar
  140. 140.
    Gilles, F. H., 1977, Lesions attributed to perinatal asphyxia in the human, in: Intrauterine Asphyxia and the Developing Fetal Brain, (L. Gluck, ed.), p. 99, Yearbook Medical Publishers, Chicago.Google Scholar
  141. 141.
    Volpe, J. J., 1977, Observing the infant in the early hours after asphyxia, in: Intrauterine Asphyxia and the Developing Fetal Brain (L. Gluck, ed.), p. 263, Yearbook Medical Publishers, Chicago.Google Scholar
  142. 142.
    Ting, P., Yamaguchi, S., Bacher, J. D., et al., 1980, Hypoxic cerebral necrosis in midgestational sheep fetuses, Pediatric Res. 14:637.Google Scholar

Copyright information

© Aubrey Milunsky, Emanuel A. Friedman, and Louis Gluck 1983

Authors and Affiliations

  • Ronald E. Myers
    • 1
    • 2
  • Kenneth R. Wagner
    • 1
    • 2
  • Gabrielle M. de Courten-Myers
    • 1
    • 2
  1. 1.Laboratory of Brain Metabolism and PathologyVeterans Administration Medical Center, Medical Research Service (151)CincinnatiUSA
  2. 2.Department of NeurologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations