Evolution and Regulation of Genes for Growth Hormone and Prolactin

  • Walter L. Miller
  • Synthia H. Mellon
Part of the Biochemical Endocrinology book series (BIOEND)


Prolactin (Prl), growth hormone (GH), and chorionic somatomammotropin (CS, placental lactogen) form a set of related polypeptide hormones that appear to have derived from a common evolutionary ancestor protein (Catt et al., 1967; Sherwood, 1967; Li et al., 1967; Niall et al., 1971). They are related by function, immunochemistry, and structure. All are lactogenic and growth-promoting, they are all of similar size (190–199 amino acids among various species), and they all have similar protein structures. Each hormone has a single homologous tryptophan residue at about locus 85 (GH and CS) or 91 (Prl), and two homologous disulfide bonds. The three hormones also each contain four internal regions of homology which are themselves homologous among the three hormones. Based on these observations from the amino acid sequencing data available in 1971, Niall et al. (1971) postulated that the three hormones had arisen by duplication of an ancestral hormone gene. Recombinant DNA technology now permits the detailed analysis of the gene sequences encoding these hormones, permitting reevaluation of this hypothesis from data describing the gene sequences themselves.


Growth Hormone Thyroid Hormone Concerted Evolution Growth Hormone Gene Growth Honnone Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnheim, N., Krystal, M., Schmickel, R., Wilson, G., Ryder, O., and Zimmer, E, 1980, Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes, Proc. Natl. Acad. Sci. USA 77: 7323–7327.PubMedCrossRefGoogle Scholar
  2. Ballard, P. L., 1979, Glucocorticoids and differentiation, in: Glucocorticoid Hormone Action ( J. D. Baxter and G. G. Rousseau, eds.), pp. 493–515, Springer-Verlag, New York.CrossRefGoogle Scholar
  3. Bancroft, F. C., Levine, L., and Tashjian, A. H., Jr., 1969, Control of growth hormone production by a clonal strain of rat pituitary cells: Stimulation by hydrocortisone, J. Cell. Biol. 43: 432–441.PubMedCrossRefGoogle Scholar
  4. Barta, A., Richards, R. I., Baxter, J. D., and Shine, J., 1981, Primary structure and evolution of the rat growth hormone gene, Proc. Natl. Acad. Sci. USA 78: 4867–4871.PubMedCrossRefGoogle Scholar
  5. Bauer, R. F., Arthur, L. O., and Fine, D. L., 1976, Propagation of mouse mammary tumor cell lines and production of mouse mammary tumor virus in a serum-free medium, In Vitro 12: 558–563.Google Scholar
  6. Baxter, J. D., 1978, Mechanisms of glucocorticoid inhibition of growth, Kidney Int. 14: 330–333.PubMedCrossRefGoogle Scholar
  7. Bellamy, D., 1964, Effect of cortisol on growth and food intake in rats, J. Endocrinol. 31: 83–84.PubMedCrossRefGoogle Scholar
  8. Benoist, C., O’Hare, K., Breathnach, R., and Chambon, P., 1980, The ovalbumin gene-sequence of putative control regions, Nucleic Acids Res. 8: 127–142.PubMedCrossRefGoogle Scholar
  9. Blundell, T. I., and Wood, S. P., 1975, Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature 257: 197–203.PubMedCrossRefGoogle Scholar
  10. Bridson, W. E., and Kohler, P. 0., 1970, Cortisol stimulation of growth hormone production by human pituitary tissue in culture, J. Clin. Endocrinol. 30: 538–540.Google Scholar
  11. Cathala, G., Savouret, J. F., Martial, J. A., and Baxter, J. D., 1983, Hormonal control of growth hormone pre-mRNA, submitted.Google Scholar
  12. Catt, K. J., Moffat, B., and Niall, H. D., 1967, Human growth hormone and placental lactogen: Structural similarity, Science 157: 321.Google Scholar
  13. Clarke, B., 1970, Darwinian evolution of proteins, Science 168: 1009–1011.PubMedCrossRefGoogle Scholar
  14. Cooke, N. E., and Baxter, J. D., 1982, Structural analysis of the prolactin gene suggests a separate origin for its 5’ end. Nature 297: 603–606.PubMedCrossRefGoogle Scholar
  15. Cooke, N. E., Coit, D., Weiner, R. I., Baxter, J. D., and Martial, J. A., 1980, Structure of cloned DNA complementary to rat prolactin messenger RNA, J. Biol. Chem. 255: 6502–6510.PubMedGoogle Scholar
  16. Cooke, N. E., Coit, D., Shine, J., Baxter, J. D., and Martial, J. A., 1981, Human prolactin: cDNA structural analysis and evolutionary comparisons, J. Biol. Chem. 256: 4006–4016.Google Scholar
  17. Dannies, P. S., and Tashjian, A. H., Jr., 1973, Growth hormone and prolactin from rat pituitary tumor cells, in: Tissue Culture: Methods and Applications ( P. F. Kruse, Jr. and M. K. Patterson, Jr., eds.), pp. 561–569, Academic Press, New York.Google Scholar
  18. Daughaday, W. J., Herrington, A. C., and Phillips, L. S., 1975, The regulation of growth by endocrines, Annu. Rev. Physiol. 37: 211–244.CrossRefGoogle Scholar
  19. Dayhoff, M. O., Eck, R. V., and Park, C. M., 1972, A model of evolutionary change in proteins, in: Atlas of Protein Sequence and Structure, Vol. 5 ( M. O. Dayhoff, ed), pp. 89–99, National Biomedical Research Foundation, Washington, D.C.Google Scholar
  20. Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C., 1978, A model of evolutionary change in proteins, in: Atlas of Protein Sequence and Structure, Vol. 5 Suppl. 3 ( M. O. Dayhoff, ed.), pp. 345–352, National Biomedical Research Foundation, Washington, D.C.Google Scholar
  21. DeFesi, C. R., Astier, H. S., and Surks, M. I., 1979, Kinetics of thyrotrophs and somatotrophs during development of hypothyroidism and L-triiodothyronine treatment of hypothyroid rats, Endocrinology 104: 1172–1180.CrossRefGoogle Scholar
  22. DeNoto, F. M., Moore, D. D., and Goodman, H. M., 1981, Human growth hormone DNA sequence and mRNA structure: Possible alternative splicing, Nucleic Acids Res. 9:3719–3730Google Scholar
  23. Dobner, P. R., Kawasaki, E. S., Yu, L.-Y., and Bancroft, F. C., 1981, Thyroid or glucocorticoid hormone induces pre-growth hormone mRNA and its probable nuclear precursor in rat pituitary cells, Proc. Natl. Acad. Sci. USA 78: 2230–2234.PubMedCrossRefGoogle Scholar
  24. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the human beta-globin gene family, Cell 21: 653–668.PubMedCrossRefGoogle Scholar
  25. Evans, M. I., Hager, L. J., and McKnight, G. S., 1981, A somatomedin-like peptide hormone is required during the estrogen-mediated induction of ovalbumin gene transcription, Cell 25: 187–193.PubMedCrossRefGoogle Scholar
  26. Fiddes, J. C., Seeburg, P. H., DeNoto, F. M., Hallwell, R. A., Baxter, J. D., and Goodman, H. M., 1979, Structure of genes for human growth hormone and chorionic somatomammotropin, Proc. Natl. Acad. Sci. USA 76: 4294–4298.PubMedCrossRefGoogle Scholar
  27. Gilbert, W., 1978, Why genes in pieces? Nature 271: 501.PubMedCrossRefGoogle Scholar
  28. Goldberg, M., 1979, Sequence analysis of Drosophila histone genes, Ph.D. thesis, Stanford University. Goodman, H. M., DeNoto, F., Fiddes, J. C., Hallewell, R. A., Page, G. S., Smith, S., and Tischer, E., 1980, Structure and evolution of growth hormone-related genes, in: Mobilization and Reassembly of Genetic Information ( Scott, W. A., Werner, R., Joseph, D. R. and Schultz, J., eds.), pp. 155–179, Academic Press, New York.Google Scholar
  29. Gubbins, E. J., Maurer, R. A., Lagrimini, M., Erwin, C. R., and Donelson, J. E., 1980, Structure of the rat prolactin gene. J. Biol. Chem. 255: 8655–8662.PubMedGoogle Scholar
  30. Hervas, F., Morreale de Escobar, G., and Escobar Del Rey, F., 1975, Rapid effects of single small doses of L-thyroxine and triiodo-L-thyronine on growth hormone, as studied in the rat by radioimmunoassay, Endocrinology 97: 91–101.PubMedCrossRefGoogle Scholar
  31. Hood, L., Campbell, J. H., and Elgin, S. C. R., 1975, The organization, expression, and evolution of antibody genes and other multigene families, Annu. Rev. Genet. 9: 305–353.Google Scholar
  32. Ivarie, R. D., Baxter, J. D., and Morris, J. A., 1981, Interaction of thyroid and glucocorticoid hormones in rat pituitary tumor cells, J. Biol. Chem. 256: 4520–4528.PubMedGoogle Scholar
  33. Katz, H. P., Youlton, R., Kaplan, S. L., and Grumbach, M. M. (1969) Growth and growth hormone III. Growth hormone release in children with primary hypothyroidism and thyrotoxicosis, J. Clin. Endocrinol. Metab. 29: 346–351.Google Scholar
  34. Kimura, M., 1979, The neutral theory of molecular evolution, Sci. Am. 241 (5): 98–126.Google Scholar
  35. Kimura, M., 1980, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16: 111–120.PubMedCrossRefGoogle Scholar
  36. Kimura, M., 1981, Estimation of evolutionary distances between homologous nucleotide sequences, Proc. Natl. Acad. Sci. USA 78: 454–458.PubMedCrossRefGoogle Scholar
  37. Kohler, P. O., Bridson, W. E., and Rayford, P. L., 1968, Cortisol stimulation of growth hormone production by monkey adenohypophysis in tissue culture, Biochem. Biophys. Res. Commun. 33: 834–840.CrossRefGoogle Scholar
  38. Kohler, P. O., Frohman, L. A., Bridson, W. E., Vanha-Perttula, T., and Hammond, J. M., 1969, Cortisol induction of growth hormone synthesis in a clonal line of rat pituitary tumor cells in culture, Science 166: 633–634.Google Scholar
  39. Kronenberg, H. M., McDevitt, B. E., Majzoub, J. A., Nathans, J., Sharp, P. A., Potts, J. T., and Rich, A., 1979, Cloning and nucleotide sequence of DNA coding for bovine preproparathyroid hormone, Proc. Nad. Acad. Sci. USA 76: 4881–4985.CrossRefGoogle Scholar
  40. Lewis, U. J., Cheever, E. V., and Van der Laan, W. P., 1965, Alterations of the proteins of the pituitary gland of the rat by estradiol and cortisol, Endocrinology 76: 362–368.PubMedCrossRefGoogle Scholar
  41. Li, C. H., Dixon, J. S., Lo, T. B., Pankov, Y. M., and Schmidt, K. D., 1967, Amino acid sequence of ovine lactogenic hormones, Nature 224: 695–696.CrossRefGoogle Scholar
  42. Liebhaber, S. A., Goossens, M., and Kan, Y. W., 1981, Homology and concerted evolution at the alpha-1 and alpha-2 loci of human alpha globin, Nature 290: 26–29.PubMedCrossRefGoogle Scholar
  43. Loeb, J. N., 1976, Corticosteroids and growth, N. Engl. J. Med. 295: 547–552.PubMedCrossRefGoogle Scholar
  44. Martial, J. A., Baxter, J. D., Goodman, H. M., and Seeburg, P. H., 1977a, Regulation of growth hormone messenger RNA by thyroid and glucocortocoid hormones, Proc. Natl. Acad. Sci. USA 74: 1816–1820.PubMedCrossRefGoogle Scholar
  45. Martial, J. A., Seeburg, P. H., Guenzi, D., Goodman, H. M., and Baxter, J. D., 1977b, Regulation of growth hormone gene expression: Synergistic effects of thyroid and glucocorticoid hormones, Proc. Natl. Acad. Sci. USA 74: 4293–4295.PubMedCrossRefGoogle Scholar
  46. Martial, J. A., Hallewell, R. A., Baxter, J. D., and Goodman, H. M., 1979, Human growth hormone: Complementary DNA cloning and expression in bacteria, Science 205: 602–607.PubMedCrossRefGoogle Scholar
  47. McKnight, G. S., and Palmiter, R. D., 1979, Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in chick oviduct, J. Biol. Chem. 254: 9050–9058.PubMedGoogle Scholar
  48. Mellon, S. H., Pruss, R. C. M., Baxter, J. D., and Spindler, S. R., 1983, In vivo effects of thyroid and glucocorticoid hormones on gene expression: Evidence of transcriptional control of growth hormone gene in thyroidectomized and adrenalectomized rats, Submitted.Google Scholar
  49. Miller, W. L., 1981, Recombinant DNA and the pediatrician, J. Pediatr. 99: 1–15.PubMedCrossRefGoogle Scholar
  50. Miller, W. L., 1982, Bovine prolactin: Corrected cDNA sequence and genetic polymorphisms, DNA 1: 313–314.Google Scholar
  51. Miller, W. L., Martial, J. A., and Baxter, J. D., 1980, Molecular cloning of DNA complementary to bovine growth hormone mRNA, J. Biol. Chem. 255: 7521–7524.PubMedGoogle Scholar
  52. Miller, W. L., Coit, D., Baxter, J. D., and Martial, J. A., 1981, Cloning of bovine prolactin cDNA and evolutionary implications of its sequence, DNA 1: 37–50.Google Scholar
  53. Miyata, T., Miyazawa, S., and Yasunaga, T., 1979, Two types of amino acid substitutions in protein evolution, J. Mol. Evol. 12: 219–236.Google Scholar
  54. Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S., 1979, Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin, Nature 278: 423–427.PubMedCrossRefGoogle Scholar
  55. Niall, H. D., Hogan, M. L., Sayer, R., Rosenblum, I. Y., and Greenwood, F. C., 1971, Sequences of pituitary and placental lactogenic and growth hormones: Evolution from a primordial peptide by gene duplication, Proc. Natl. Acad. Sci. USA 68: 866–869.PubMedCrossRefGoogle Scholar
  56. Farrell, P., 1981, Replacement synthesis method of labeling DNA fragments, Focus 3: 1–3.Google Scholar
  57. Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D., and Shows, T. B., 1980, Genes for growth hormone, chorionic somatomammotropin, and growth hormone-like gene on chromosome 17 in humans, Science 209: 289–292.PubMedCrossRefGoogle Scholar
  58. Owerbach, D., Rutter, W. J., Cooke, N. E., Martial, J. A., and Shows, T. B., 1981, The prolactin gene is located on chromosome 6 in humans, Science 212: 815–816.PubMedCrossRefGoogle Scholar
  59. Peake, G. T., Birge, C. A., and Daughaday, W. H., 1973, Alterations of radioimmunoassayable growth hormone and prolactin during hypothyroidism, Endocrinology 92: 487–493.PubMedCrossRefGoogle Scholar
  60. Perler, F., Efstratiadis, A., Lomedico, P., Gilbert, W., Kolodner, R., and Dodgson, J., 1980, The evolution of genes: The chicken proinsulin gene. Cell 20: 555–566.Google Scholar
  61. Proudfoot, N. J., and Brownlee, G. G., 1976, 3’ Non-coding region sequences in eukaryotic messenger RNA, Nature 263: 211–214.Google Scholar
  62. Reeder, R. H., and Roeder, R. G., 1972, Ribosomal RNA synthesis in isolated nuclei, J. Mol. Biol. 67: 433–441.PubMedCrossRefGoogle Scholar
  63. Richmond, R. C., 1970, Non-Darwinian evolution: A critique. Nature 225: 1025–1028.PubMedCrossRefGoogle Scholar
  64. Ringold, G. M., Yamamoto, K. R., Bishop, J. M., and Varmus, H. E., 1977, Glucocorticoid-stimulated accumulation of mouse mammary tumor virus RNA: Increased rate of synthesis of viral RNA. Proc. Natl. Acad. Sci. USA 74: 2879–2883.PubMedCrossRefGoogle Scholar
  65. Samuels, H. H., and Shapiro, L. E., 1976, Thyroid hormone stimulates de novo growth hormone synthesis in cultured GH, cells: Evidence for the accumulation of a rate limiting RNA species in the induction process, Proc. Natl. Acad. Sci. USA 73: 3364–3373.CrossRefGoogle Scholar
  66. Samuels, H. H., and Tsai, J. S., 1973, Thyroid hormone action in cell culture: Demonstration of nuclear receptors in intact cells and isolated nuclei, Proc. Natl. Acad. Sci. USA 70: 3488–3492.PubMedCrossRefGoogle Scholar
  67. Samuels, H. H., Horwitz, Z. D., Stanley, F., Casanova, J., and Shapiro, L. E., 1977, Thyroid hormone controls glucocorticoid action in cultured GH, cells, Nature 268: 254–256.PubMedCrossRefGoogle Scholar
  68. Samuels, H. H., Klein, D., Stanley, F., and Casanova, J., 1978, Evidence for thyroid hormone-dependent and independent glucocorticoid actions in cultured cells, J. Biol. Chem. 253: 5895–5898.PubMedGoogle Scholar
  69. Samuels, H. H., Stanley, F., and Shapiro, L. E., 1979, Control of growth hormone synthesis in cultured GH, cells by 3,5,3’-triiodo-L-thyronine and glucocorticoid agonists and antagonists: Studies on the independent and synergistic regulation of the growth hormone response, Biochemistry 18: 715–721.PubMedCrossRefGoogle Scholar
  70. Sasavage, N. L., Nilson, J. H., Horowitz, S., and Rottman, F. M., 1982, Nucleotide sequence of bovine prolactin messenger RNA—evidence for sequence polymorphism, J. Biol. Chem. 257: 678–681.PubMedGoogle Scholar
  71. Sawano, S., Arimura, A., Schally, A. V., Reding, T. W., and Schapiro, S., 1969, Neonatal corticoid administration: Effects upon adult pituitary growth hormone and hypothalamic growth hormone-releasing hormone, Acta Endocrinol. 61: 57–67.PubMedGoogle Scholar
  72. Seeburg, P. H., Shine, J., Martial, J. A., Baxter, J. D., and Goodman, H. M., 1977, Nucleotide sequence and amplification in bacteria of the structural gene for rat growth hormone, Nature 270: 486–494.PubMedCrossRefGoogle Scholar
  73. Selby, M., Barta, A., Birnbaum, M., Baxter, J. D., Bell, G. I., and Eberhardt, N. L., Structure and linkage of the human chorionic somatomammotropin gene family, Submitted.Google Scholar
  74. Seo, H., Vassart, G., Brocas, H., and Refetoff, S., 1977, Triiodothyronine stimulates specifically growth hormone mRNA in rat pituitary tumor cells, Proc. Natl. Acad. Sci. USA 74: 2054–2058.PubMedCrossRefGoogle Scholar
  75. Shapiro, L. E., Samuels, H. H., and Yaffe, B. M., 1978, Thyroid and glucocorticoid hormones synergistically control growth hormone mRNA in cultured GH, cells, Proc. Natl. Acad. Sci. USA 75: 45–49.PubMedCrossRefGoogle Scholar
  76. Sherwood, L. M., 1967, Similarities in the chemical structure of human placental lactogen and pituitary growth hormone, Proc. Natl. Acad. Sci. USA 58: 2307–2314.PubMedCrossRefGoogle Scholar
  77. Shine, J., Seeburg, P. H., Martial, J., Baxter, J. D., and Goodman, H. M., 1977, Construction and analysis of recombinant DNA for human chorionic somatomammotropin, Nature 270: 494–499.PubMedCrossRefGoogle Scholar
  78. Spindler, S. R., Mellon, S. H., and Baxter, J. D., 1982, Growth hormone gene transcription is regulated by thyroid and glucocorticoid hormones in cultured rat pituitary tumor cells, J. Biol. Chem. 257: 11627–11632.PubMedGoogle Scholar
  79. Strickland, A. L., 1972, Growth retardation in Cushing’s syndrome, Am. J. Dis. Child. 124: 207–213.Google Scholar
  80. Suda, T., Demurs, H., Demura, R., Jibiki, K., Tozawa, F., and Shizume, K., 1980, Anterior pituitary hormones in plasma and pituitaries from patients with Cushing’s disease, J. Clin. Endocrinol. Metab. 51: 1048–1053.PubMedCrossRefGoogle Scholar
  81. Surks, M. I., and DeFesi, C. R., 1977, Determination of the cell number of each cell type in the anterior pituitary of euthyroid and hypothyroid rats, Endocrinology 101: 946–958.PubMedCrossRefGoogle Scholar
  82. Tashjian, A. H., Jr., Yasumura, Y., Levine, L., Sato, G. H., and Parker, M. L., 1968, Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone, Endocrinology 82: 342–352.PubMedCrossRefGoogle Scholar
  83. Thomas, P. S., 1980, Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci. USA 77: 5201–5205.PubMedCrossRefGoogle Scholar
  84. Tyrrell, J. B., Wiener-Kronish, J., Lorenzi, M., Brooks, R. M., and Forsham, P. H., 1977, Cushing’s disease: Growth hormone response to hypoglycemia after correction of hypercortisolism, J. Clin. Endocrinol. Metab. 44: 218–221.PubMedCrossRefGoogle Scholar
  85. Wegnez, N., Schachter, B. S., Baxter, J. D., and Martial, J. A., 1982, Hormonal regulation of growth hormone mRNA, DNA 1: 145–153.Google Scholar
  86. Weil, P. A., and Blatti, S. P., 1974, Partial purification and properties of calf thymus deoxyribonucleic acid dependent RNA polymerase III, Biochemistry 14: 1636–1642.CrossRefGoogle Scholar
  87. Weinmann, R., and Roeder, R. G., 1974, Role of DNA-dependent RNA polymerase III in the transcription of the tRNA and 5S RNA genes, Proc. Nall. Acad. Sci. USA 71: 1790–1794.CrossRefGoogle Scholar
  88. Whitfeld, P. L., Seeburg, P. H., and Shine, J., 1982, The human pro-opiomelanocortin gene: Organization, sequence, and interspersion with repetitive DNA, DNA 1: 133–143.Google Scholar
  89. Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem. 46: 573–639.CrossRefGoogle Scholar
  90. Winick, M., and Coscia, A., 1968, Cortisone induced growth failure in neonatal rats, Pediatr. Res. 2: 451–455.Google Scholar
  91. Yu, L.-Y., and Bancroft, F. C., 1977, Glucocorticoid induction of growth hormone synthesis in a strain of rat pituitary cells, J. Biol. Chem. 252: 3870–3875.PubMedGoogle Scholar
  92. Zachman, M., and Prader, A., 1972, Interactions of growth hormone with other hormones, in: Human Growth Hormone ( A. S. Mason, ed.), pp. 39–93, Heinemann Medical Books, London.Google Scholar
  93. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W., and Wilson, A. C., 1980, Rapid duplication and loss of genes coding for the alpha-chains of hemoglobin, Proc. Natl. Acad. Sci. USA 77: 2158–2162.PubMedCrossRefGoogle Scholar
  94. Zuckerkandl, E., and Pauling, L., 1962, Molecular disease, evolution and genic heterogeneity, in: Horizons in Biochemistry ( M. Kasha and B. Pullman, eds.), pp. 189–225, Academic Press, New York.Google Scholar
  95. Zuckerkandl, E., and Pauling, L., 1965, Evolutionary divergence and convergence in proteins, in: Evolving Genes and Proteins ( V. Bryson and H. J. Vogel, eds.), pp. 97–166, Academic Press, New York.Google Scholar
  96. Zylber, E. A., and Penman, S., 1971, Products of RNA polymerases in HeLa cell nuclei, Proc. Natl. Acad. Sci. USA 68: 2861–2865.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Walter L. Miller
    • 1
  • Synthia H. Mellon
    • 2
  1. 1.Department of Pediatrics and Metabolic Research Unit, Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  2. 2.Metabolic Research Unit, Department of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations