Sequential Regulation of Gene Expression by Estrogen in the Developing Rat Uterus

  • Alvin M. Kaye
Part of the Biochemical Endocrinology book series (BIOEND)


The study of gene expression in eukaryotic systems has, to date, followed two contrasting approaches: RNA-DNA hybridization surveys of the range of newly synthesized mRNA, or detailed investigation of a few marker proteins, usually major products of highly specialized differentiated cells. Studies of RNA-DNA hybridization are discussed by Knowler in Chapter 7 of this book. Examples of uterine estrogen-regulated proteins are presented in this chapter, concentrating on estrogen-regulated creatine kinase, originally described by Notides and Gorski (1966) under the name “estrogen-induced protein” (IP). This protein was discovered by pursuing the observations (see review by Katzenellenbogen and Gorski, 1975) that the characteristic early estrogen-stimulated increases in phospholipid and RNA synthesis can be blocked by inhibitors of protein, or of RNA synthesis. The interpretation was that new mRNA, for proteins needed to mediate the early metabolic changes in the uterus, is rapidly synthesized in response to estrogen. Subsequently, Notides and Gorski (1966) demonstrated the rapid stimulation of synthesis of a specific uterine “estrogen-induced protein” (IP), a possible candidate for such a regulator protein. However, no evidence was obtained for this role for IP. Baulieu et al. (1972) postulated that IP might be a “key intermediary protein” needed to stimulate ribosomal RNA synthesis. This hypothesis was rejected since no IP was found in the nucleus (King et al., 1974; Pennequin et al., 1975), the predicted site of action for such a key protein. Phosphoprotein phosphatase activity was found in purified IP preparations (Vokaer et al., 1974), but was later separated from IP (Kaye et al., 1975b). A highly recommended comprehensive review of the literature prior to 1976 on estrogen effects on the uterus is given by Segal et al. (1977).


Creatine Kinase Ornithine Decarboxylase Estrogen Regulation Methionine Incorporation Enolase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., and Barker, K. L., 1979, Regulation of glucose-6-phosphate dehydrogenase mRNA levels in the uterus by estradiol, Fed. Proc. Am. Soc. Exp. Biol. 38: 399.Google Scholar
  2. Aviv, H., and Leder, P., 1972, Purification of biologically active globin messenger RNA by chromatography on oligo-thymidylic acid cellulose, Proc. Natl. Acad. Sci. USA 69: 1408–1412.PubMedCrossRefGoogle Scholar
  3. Barker, K. L., 1971, Estrogen induced synthesis of histones and a specific nonhistone protein in the uterus, Biochemistry 10: 284–291.PubMedCrossRefGoogle Scholar
  4. Barker, K. L., and Warren, J. C., 1966, Estrogen control of uterine carbohydrate metabolism: Factors affecting glucose utilization, Endocrinology 79: 1069–1074.PubMedCrossRefGoogle Scholar
  5. Barker, K. L., Adams, D. J., and Donohue, T. M. Jr., 1981, Regulation of the levels of mRNA for glucose-6-phosphate dehydrogenase and its rate of translation in the uterus by estradiol, in: Cellular and Molecular Aspects of Implantation ( S. R. Glasser and D. W. Bullock, eds.), pp. 269–281, Plenum Press, New York.CrossRefGoogle Scholar
  6. Barnea, A., and Gorski, J., 1970, Estrogen-induced protein. Time course of synthesis, Biochemistry 9: 1899–1904.PubMedCrossRefGoogle Scholar
  7. Baulieu, E. E., Alberga, A., Raynaud-Jammet, C., and Wira, C. R, 1972, New look at the very early steps of oestrogen action in uterus, Nature New Biol. 236: 236–239.Google Scholar
  8. Bennett, G. S., 1974, Immunologic and electrophoretic identity between nervous system–specific proteins antigen alpha and 14–3–2, Brain Res. 68: 365 – 369.PubMedCrossRefGoogle Scholar
  9. Bennett, G. S., and Edelman, G. M., 1968, Isolation of an acidic protein from rat brain, J. Biol. Chem. 243: 6234–6241.PubMedGoogle Scholar
  10. Bock, E., and Dissing, J., 1975, Demonstration of enolase activity connected to the brain–specific protein 14–3–2. Scand. J. Immunol. 4: 31 – 36.CrossRefGoogle Scholar
  11. Bock, E., Fletcher, L., Rider, C. C., and Taylor, C. B., 1978, The nature of the two proteins of brain specific antigen 14–3–2, J. Neurochem. 30: 181 – 185.PubMedCrossRefGoogle Scholar
  12. Caravatti, M., Perriard, J. C., and Eppenberger, H. M., 1979, Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken, J. Biol. Chem. 254: 1388–1394.Google Scholar
  13. Chan, L., and O’Malley, B. W., 1976, Mechanism of action of the sex steroid hormones, N. Engl. J. Med. 294:1322–1328, 1372–1381, and 1430–1437.Google Scholar
  14. Cicero, T. J., Cowan, W. N., and Moore, B. W., 1970a, Changes in the concentrations of the two brain specific proteins, S–100 and 14–3–2 during the development of the avian optic tectum, Brain Res. 24: 1 – 10.PubMedCrossRefGoogle Scholar
  15. Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V., 1970b, Cellular localization of the two brain specific proteins S–100 and 14–3–2, Brain Res. 18: 25 – 34.PubMedCrossRefGoogle Scholar
  16. Cidlowski, J. A., and Muldoon, T. C., 1978, The dynamics of intracellular estrogen receptor regulation as influenced by 1713-estradiol, Biol. Reprod. 18: 234–246.CrossRefGoogle Scholar
  17. Cleveland, D. A., Fischer, S. G., Kirschner, M. W., and Laemmli, U K., 1977, Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, J. Biol. Chem. 252: 1102–1106.PubMedGoogle Scholar
  18. Cohen, S., O’Malley, B. W., and Stastny, M., 1970, Estrogenic induction of ornithine decarboxylase in vivo and in vitro, Science 170: 336–338.PubMedCrossRefGoogle Scholar
  19. De Angelo, A. B., and Gorski, J., 1970, Role of RNA synthesis in the estrogen induction of a specific uterine protein, Proc. Natl. Acad. Sci. USA 66: 693–700.CrossRefGoogle Scholar
  20. de Asua, J., Rozengurt, L., and Carminatti, H., 1968, Estradiol induction of pyruvate kinase in the rat uterus, Biochim. Biophys. Acta 170: 254–262.Google Scholar
  21. Donahue, T. M. Jr., Mahowald, T. A., and Barker, K. L., 1977, Identification and labeling of the NH2-terminal residue of uterine glucose-6-phosphate dehydrogenase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 799.Google Scholar
  22. Donahue, T. M. Jr., Mahowald, T. A., and Barker, K. L., 1979, Post-transcriptional control of glucose-6-phosphate dehydrogenase synthesis in the uterus by estradiol. Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 329.Google Scholar
  23. Dupont-Mairesse, N., and Galand, P., 1975, Estrogen action: Induction of the synthesis of a specific protein (IP) in the myometrium, the stroma and the luminal epithelium of the rat uterus, Endocrinology 96: 1587–1591.PubMedCrossRefGoogle Scholar
  24. Eckstein, B., and Villee, C. A., 1966, Effects of estradiol on enzymes of carbohydrate metabolism in rat uterus, Endocrinology 78: 409–411.PubMedCrossRefGoogle Scholar
  25. Eppenberger, H. M., Dawson, D. M., and Kaplan, N. 0., 1967, The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues, J. Biol. Chem. 242: 204–209.Google Scholar
  26. Focant, B., and Watts, D. C., 1973, Properties and mechanism of action of creatine kinase from ox smooth muscle, Biochem. J. 135: 265–276.Google Scholar
  27. Galand, P., Flandroy, L., and Mairesse, N., 1978, Relationship between the estrogen induced protein IP and other parameters of estrogenic stimulation. A hypothesis, Life Sci. 22: 217–238.PubMedCrossRefGoogle Scholar
  28. Gorski, J., Sarff, M., and Clark, J., 1971, The regulation of uterine concentration of estrogen binding protein, Adv. Biosci. 7: 5–20.Google Scholar
  29. Gulino, A., Sumida, C., Gelly, C., Giambiagi, N., and Pasqualini, J. R., 1981, Comparative dynamic studies on the biological responses to estriol and 1713 estradiol in the fetal uterus of guinea pig: Relationship to circulating estrogen concentrations, Endocrinology 109: 748–756.PubMedCrossRefGoogle Scholar
  30. Harris, J. N., and Gorski, J., 1978a, Estrogen stimulation of DNA dependent DNA polymerase activity in immature rat uterus, Mol. Cell. Endocrinol. 10: 293–305.CrossRefGoogle Scholar
  31. Harris, J., and Gorski, J., 1978b, Evidence for a discontinuous requirement for estrogen in stimulation of deoxyribonucleic acid synthesis in the immature rat uterus, Endocrinology 103: 240–245.PubMedCrossRefGoogle Scholar
  32. Higgins, S. J., and Gehring, U., 1978, Molecular mechanisms of steroid hormone action, Adv. Cancer Res. 28: 313–397.CrossRefGoogle Scholar
  33. Iacobelli, S., Longo, P., and Ranelletti, F., 1979, Measurement of a specific estrogen induced protein (IP) in rat and mouse tissues, in: Research on Steroids. Vol. 8 ( A. Klopper, L. Lerner, S. J. Van der Molen, and F. Sciarra, eds.), pp. 53–56, Academic Press, New York.Google Scholar
  34. Iacobelli, S., Marchetti, P., Bartoccioni, E., Natoli, V., Scambia, G., and Kaye, A. M., 1981, Steroid-induced proteins in human endometrium, Mol. Cell. Endocrinol. 23: 321–331.CrossRefGoogle Scholar
  35. Iyengar, M. R., and Iyengar, C. W. L., 1980, Characterization of uterine muscle creatine kinase response to estrogen, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2171.Google Scholar
  36. Iyengar, M. R., Fluellen, C. E., and Iyengar, C. W. L., 1980, Increased creatine kinase in the hormone-stimulated smooth muscle of the bovine uterus, Biochem. Biophys. Res. Commun. 94: 948–954.CrossRefGoogle Scholar
  37. Jacobus, W. E., and Lehninger, A. L., 1973, Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport, J. Biol. Chem. 248: 4803–4810.PubMedGoogle Scholar
  38. Jellinck, P. H., Newcombe, A., and Keeping, H. S., 1979, Peroxidase as a marker enzyme in estrogen-responsive tissues, Adv. Enzyme Regul. 17: 325–342.CrossRefGoogle Scholar
  39. Katz, J., Finlay, T. H., Tom, C., and Levitz, M., 1980, A new hormone-responsive hydrolase activity in the mouse uterus, Endocrinology 107: 1725–1730.PubMedCrossRefGoogle Scholar
  40. Katzenellenbogen, B. S., and Gorski, J., 1972, Estrogen action in vitro: Induction of the synthesis of a specific uterine protein, J. Biol. Chem. 247: 1299–1305.PubMedGoogle Scholar
  41. Katzenellenbogen, B. S., and Gorski, J., 1975, Estrogen actions on syntheses of macromolecules in target cells, in: Biochemical Actions of Hormones. Vol. 3 ( G. Litwak, ed.), pp. 187–243, Academic Press, New York.Google Scholar
  42. Katzenellenbogen, B. S., and Greger, N. G., 1974, Ontogeny of uterine responsiveness to estrogen during early development in the rat, Mol. Cell. Endocrinol. 2: 31–42.CrossRefGoogle Scholar
  43. Katzenellenbogen, B. S., and Leake, R. E., 1974, Distribution of tbe oestrogen-induced protein and of total protein between endometrial and myometrial fractions of the immature and mature rat uterus, J. Endocrinol. 63: 439–449.PubMedCrossRefGoogle Scholar
  44. Katzenellenbogen, B. S., and Tsai, T-L. S., Tatee, T., and Katzenellenbogen, J. A., 1979, Estrogen and antiestrogen action. Studies in reproductive target tissues and tumors, Adv. Exp. Med. Biol. 117: 111–132.Google Scholar
  45. Katzman, P. A., Larson, D. L., and Podratz, K. C., 1971, Effects of estradiol on metabolism of vaginal tissue, in: The Sex Steroids: Molecular Mechanisms ( K. W. McKems, ed.), pp. 107–147, Appleton-Century-Crofts, New York.Google Scholar
  46. Kaye, A. M., and Reiss, N., 1980, The uterine “estrogen induced” protein (IP): Purification, distribution and possible function, in: Steroid Induced Uterine Proteins ( M. Beato, ed.), pp. 3–19, Elsevier/North Holland, Amsterdam.Google Scholar
  47. Kaye, A. M., Icekson, I., and Lindner, H. R., 1971, Stimulation by estrogens of ornithine and Sadenosylmethionine decarboxylases in the immature rat uterus, Biochim. Biophys. Acta 252: 150–159.CrossRefGoogle Scholar
  48. Kaye, A. M., Sheratzky, D., and Lindner, H. R., 1972, Kinetics of DNA synthesis in immature rat uterus: Age dependence and estradiol stimulation, Biochim. Biophys. Acta 261: 475–486.CrossRefGoogle Scholar
  49. Kaye A. M., Icekson, I., Lamprecht, S. A., Gruss, R., Tsafriri, A., and Lindner, H. R., 1973, Stimulation of ornithine decarboxylase activity by luteinizing hormone in immature and adult rat ovaries, Biochemistry 12: 3072–3076.PubMedCrossRefGoogle Scholar
  50. Kaye, A. M., Sömjen, D., King, R. J. B., Sömjen, G., Icekson, I., and Lindner, H. R., 1974, Sequential gene expression in response to estradiol-1713 during post-natal development of rat uterus, Adv. Exp. Med. Biol. 44: 383–402.PubMedGoogle Scholar
  51. Kaye, A. M., Sömjen, D., Sömjen, G., Walker, M., Icekson, I., and Lindner, H. R., 1975a, Regulation of macromolecular synthesis by oestrogen: a developmental approach, Biochem. Soc. Trans. 3: 1151–1156.Google Scholar
  52. Kaye, A. M., Walker, M. D., and Sömjen, D., 1975b, Separation of “estrogen-induced” protein from phosphoprotein phosphatase activity of immature rat uterus, Proc. Nall. Acad. Sci. USA 72: 2631–2634.CrossRefGoogle Scholar
  53. Kaye, A. M., Reiss, N., and Walker, M. D., 1980a, Sequential acquisition of responsiveness to estrogen in the rat uterus, in: Development of Responsiveness to Steroid Hormones ( A. M. Kaye and M. Kaye, eds.), Oxford, Pergamon Press.Google Scholar
  54. Kaye, A. M., Reiss, N., Iacobelli, S., Bartoccioni, E., and Marchetti, P., 1980b, The “estrogen-induced protein” in normal and neoplastic cells, in: Progress in Cancer Research and Therapy Vol. 14 ( S. Iacobelli, R. J. B. King, H. R. Lindner, and M. E. Lipman, eds.), pp. 41–52, Raven Press, New York.Google Scholar
  55. Kaye, A. M., Reiss, N., Shaer, A., Sluyser, M., Iacobelli, S., Amroch, D., and Soffer, Y., 1981, Estrogen responsive creatine kinase in normal and neoplastic cells, J. Steroid Biochem. 15: 69–75.PubMedCrossRefGoogle Scholar
  56. Kessler, S. W., 1975, Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A, J. Immunol., 115: 1617–1624.PubMedGoogle Scholar
  57. King, R. J. B., Sömjen, D., Kaye, A. M., and Lindner, H. R., 1974, Stimulation by oestradiol-17f3 of specific cytoplasmic and chromosomal protein synthesis in immature rat uterus. Mol. Cell. Endocrinol. 1: 21–36.Google Scholar
  58. Kirby, K. S., 1968, Isolation of nucleic acids with phenolic solvents, Methods Enzymol. 12B: 87–97.Google Scholar
  59. Kirkland, J. L., Barrett, G. N., and Stancel, G. M., 1981a, Decreased cell division of the luminal epithelium of diabetic rats in response to 1713-estradiol, Endocrinology 109: 316–318.PubMedCrossRefGoogle Scholar
  60. Kirkland, J. L., Gardner, R. M., Mukku, V. R., Akhtar, M., and Stancel, G. M., 1981b, Hormonal control of uterine growth: The effect of hypothyroidism on estrogen-stimulated cell division, Endocrinology 108: 2346–2351.PubMedCrossRefGoogle Scholar
  61. Korach, K. S., Harris, S. E., and Carter, D. B., 1981, Uterine proteins influenced by estrogen exposure: Analysis by two-dimensional gel electrophoresis. Mol. Cell. Endocrinol. 21: 243–254.PubMedCrossRefGoogle Scholar
  62. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  63. Lawson, G. M., Knoll, B. J., Anderson, J. N., Vanderbilt, J. N., Tsai, M. J., Woo, S. L. C., and O’Malley, B. W., 1981, Studies on the chromosomal structure of hormone inducible genes, Proceedings of the 63rd Annual Meeting, The Endocrine Society, Endocrinology 108(suppl.): 172 (abat.).Google Scholar
  64. Leavitt, W. W., Chen, T. J., and Allen, T. C., 1977, Regulation of progesterone receptor formation by estrogen action, Ann. N.Y. Acad. Sci., 286: 210–225.PubMedCrossRefGoogle Scholar
  65. Levy, H. R., 1979, Glucose-6-phosphate dehydrogenase, Adv. Enzymol. 48: 97–192.Google Scholar
  66. Luh, W., and Henkel, E., 1965, Phosphotransferasen in menschlicher skelett-und utersmuskulatur, Z. Geburtshilfe Gynakol., 163: 279–288.Google Scholar
  67. Lyttle, C. R., and De Sombre, E. R., 1977, Uterine peroxidase as a marker for estrogen action, Proc. Natl. Acad. Sci. USA 74: 3162–3166.PubMedCrossRefGoogle Scholar
  68. Lyttle, C. R., Garay, R. V., and De Sombre, E. R., 1979, Ontogeny of the estrogen inducibility of uterine peroxidase, J. Steroid Biochem. 10: 359–363.PubMedCrossRefGoogle Scholar
  69. Mairesse, N., and Galand, P., 1979, Comparison between the action of estradiol and that of the antiestrogen U-11,100 A on the induction in the rat uterus of a specific protein (the induced protein), Endocrinology 105: 1248–1253.PubMedCrossRefGoogle Scholar
  70. Mairesse, N., and Galand, P., 1982, Estrogen-induced proteins in luminal epithelium, endometrial stroma and myometrium of the rat uterus. Mol. Cell. Endocrinol., 28: 671–679.PubMedCrossRefGoogle Scholar
  71. Mairesse, N., Heuson, J. C., Galand, P., and Leclercq, G., 1977, Oestrogen-induced protein in rat mammary tumor and uterus, J. Endocrinol. 75: 331–332.PubMedCrossRefGoogle Scholar
  72. Mairesse, N., Reiss, N., Galand, P., and Kaye, A. M., 1981, Nafoxidine responsive uterine protein: Further characterization and distinction from the “estrogen-induced” protein (IP), Mol. Cell. Endocrinol. 24: 53–63.CrossRefGoogle Scholar
  73. Malnick, S. D. H., and Kaye, A. M., 1982, Estrogen-responsive creatine kinase in immature rat ovary, J. Steroid Biochem. 17: V.CrossRefGoogle Scholar
  74. Marangos, P. J., Zomzely-Neurath, C., and York, C., 1975a, Immunological studies of a nerve specific protein, Arch. Biochem. Biophys. 170: 289–293.Google Scholar
  75. Marangos, P. J., Zomzely–Neurath, C., Luk, D. C. M., and York, C., 1975b, Isolation and characterization of the nervous system specific protein 14–3–2 from rat brain, J. Biol. Chem. 250: 1884 – 1891.PubMedGoogle Scholar
  76. Marangos, P. J., Zomzely-Neurath, C., and York, C., 1976, Determination and characterization of neuron specific protein (NSP) associated enolase activity, Biochem. Biophys. Res. Commun. 68: 1309–1316.CrossRefGoogle Scholar
  77. Marangos, P. J., Zis, A. P., Clark, R. L., and Goodwin, F. K., 1978, Neuronal, non-neuronal and hybrid forms of enolase in brain: Structural, immunological and functional comparisons, Brain Res. 150: 117–133.PubMedCrossRefGoogle Scholar
  78. Mayol, R. F., and Thayer, S. A., 1970, Synthesis of estrogen-specific proteins in the uterus of the immature rat, Biochemistry 9: 2484–2489.PubMedCrossRefGoogle Scholar
  79. Miura, S., Burzio, L., and Koide, S. S., 1972, Studies on deoxyribonucleic acid synthesis in uteri of immature mouse, Horm. Metab. Res. 4: 273–277.CrossRefGoogle Scholar
  80. Moore, B. W., and Perez, V. J., 1968, Specific acidic proteins of the nervous system, in: Physiological and Biochemical Aspects of Nervous Integration ( F. D. Carlson, ed.), pp. 343–360, Prentice-Hall, Engelwood Cliffs, New Jersey.Google Scholar
  81. Mueller, G. C., Herranen, A. M., and Jervell, K. F., 1958, Studies on the mechanism of action of estrogens, Rec. Prog. Horm. Res. 14: 95–139.PubMedGoogle Scholar
  82. Notides, A., and Gorski, J., 1966, Estrogen-induced synthesis of a specific uterine protein, Proc. Natl. Acad. Sci. USA 56: 230–235.PubMedCrossRefGoogle Scholar
  83. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  84. Ozasa, H., Tominaga, T., Nishimura, T., and Takeda, T., 1981, Lysyl oxidase activity in the mouse uterine cervix is physiologically regulated by estrogen, Endocrinology 109: 618–621.PubMedCrossRefGoogle Scholar
  85. Peleg, S., De Boever, J., and Kaye, A. M., 1979, Replenishment and nuclear retention of oestradiol-170 receptors in rat uteri during postnatal development, Biochim. Biophys. Acta 587: 67–74.CrossRefGoogle Scholar
  86. Pelham, H. R. B., and Jackson, R. J., 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67: 247–256.PubMedCrossRefGoogle Scholar
  87. Pennequin, P., Robel, P., and Baulieu, E. E., 1975, Steroid-induced early protein synthesis in rat uterus and prostate, Eur. J. Biochem. 60: 137–145.PubMedCrossRefGoogle Scholar
  88. Raynaud, J. P., Moguilewsky, M., and Vannier, B., 1980, Influence of rat estradiol binding plasma protein (EBP) on estrogen binding to its receptor and on induced biological responses, in: The Development of Responsiveness to Steroid Hormones (A. M. Kaye and M. Kaye, eds.), Pergamon Press, Oxford. Adv. in Biosci. 25, 59–75.Google Scholar
  89. Reiss, N. A., and Kaye, A. M., 1981, Identification of the major component of the estrogen-induced protein of rat uterus as the BB isozyme of creatine kinase, J. Biol. Chem. 256: 5741–5749.PubMedGoogle Scholar
  90. Schmidt, H., Noak, I., Walther, H., and Voigt, K. D., 1967, Einfluss von cyclus and exogener hormonzufuhr auf stoffwechsel vorgange des rattenuterus. Acta Endocrinol. 56: 231–243.PubMedGoogle Scholar
  91. Schwark, W. S., Singhal, R. L., and Ling, G. M., 1969, Metabolic control mechanisms in mammalian systems. VIII. Estrogenic induction of fructose 1,6-diphosphate aldolase in the rat uterus. Biochim. Biophys. Acta 192: 106–117.PubMedCrossRefGoogle Scholar
  92. Scott, D. B. M., and Lisi, A. G., 1960, Changes in enzymes of the uterus of the ovariectomized rat after treatment with oestradiol, Biochem. J. 77: 52–63.PubMedGoogle Scholar
  93. Segal, S. J., Scher, W., and Koide, S. S., 1977, Estrogens, nucleic acids and protein synthesis in uterine metabolism, in: Biology of the Uterus, 2nd Ed. ( R. M. Wynn, ed.), pp. 139–201, Plenum Press, New York.CrossRefGoogle Scholar
  94. Shaer, A., Amroch, D., Malnick, S., and Kaye, A. M., 1982, Estrogen-responsive creatine kinase in normal human breast tissue, Israel J. Med. Sci. 18: 565.Google Scholar
  95. Skipper, J. K., Eakle, S. D., and Hamilton, T. H., 1980, Modulation by estrogen of synthesis of specific uterine proteins, Cell 22: 69–78.PubMedCrossRefGoogle Scholar
  96. Smith, E. R., and Barker, K. L., 1974, Effects of estradiol and NADP on the rate of synthesis of uterine glucose-6-phosphate dehydrogenase, J. Biol. Chem. 249: 6541–6547.PubMedGoogle Scholar
  97. Smith, E. R., and Barker, K. L., 1977, Effects of estradiol and NADP on the rate of degradation of uterine glucose-6-phosphate dehydrogenase, J. Biol. Chem. 252: 3709–3714.PubMedGoogle Scholar
  98. Smith, D. E., and Gorski, J., 1968, Estrogen control of uterine glucose metabolism. An analysis based on the transport and phosphorylation of 2-deoxyglucose, J. Biol. Chem. 243: 4169–4174.PubMedGoogle Scholar
  99. Sömjen, D., Sömjen, G., King, R. J. B., Kaye, A. M., and Lindner, H. R., 1973a, Nuclear binding of oestradiol-1713 and induction of protein synthesis in the rat uterus during postnatal development, Biochem. J. 136: 25–33.PubMedGoogle Scholar
  100. Sömjen, D., Kaye, A. M., and Lindner, H. R., I973b, Postnatal development of uterine response to estradiol-1713 in the rat, Dev. Biol. 31: 409–412.Google Scholar
  101. Sömjen, G. J., Kaye, A. M., and Lindner, H. R., 1974, Oestradiol-1713 binding proteins in the rat uterus: Changes during postnatal development, Mol. Cell. Endocrinol. 1: 341–353.CrossRefGoogle Scholar
  102. Sömjen, G. J., Kaye, A. M., and Lindner, H. R., 1976, Demonstration of 8S-cytoplasmic estrogen-receptor in rat Mullerian duct, Biochim. Biophys. Acta 428: 787–791.CrossRefGoogle Scholar
  103. Sonnenschein, C., and Soto, A. M., 1978, Pituitary uterotrophic effect in the estrogen-dependent growth of the rat uterus, J. Steroid Biochem, 9: 533–537.PubMedCrossRefGoogle Scholar
  104. Stormshak, F., Harris, J. N., and Gorski, J., 1978, Nuclear estrogen receptor and DNA synthesis, in: Receptors and Hormone Action, Vol. II ( B. W. O’Malley and L. Bimbaumer, eds.), pp. 63–81, Academic Press, New York.Google Scholar
  105. Strohman, R. C., Moss, P. S., Micou-Eastwood, J., Spector, D., Przbyla, A., and Patterson, B., 1977, Messenger RNA for myosin polypeptides: Isolation from single myogenic cell cultures, Cell 10: 265–273.PubMedCrossRefGoogle Scholar
  106. Tam, A., and Spaziani, E., 1970, The effect of estradiol 170 on uterine adenosine triphosphatases of the rat, Fed. Proc. Fed. Am. Soc. Exp. Biol. 29: 249.Google Scholar
  107. Teng, C-S, and Hamilton, T. H., 1970, Regulation by estrogen of organ-specific synthesis of a nuclear acidic protein, Biochem. Biophys. Res. Commun. 40: 1231–1238.CrossRefGoogle Scholar
  108. Thomas, P. J., and Knight, A., 1978, Sexual differentiation of the brain, in: Current Studies of Hypothalamic Function, Vol. I ( K. Lederis and W. L. Veale, eds.), pp. 192–203, Karger, Basel.Google Scholar
  109. Tremblay, G. C., and Thayer, S. A., 1964, The effect of estradiol-170 on the activity of carbamoyl phosphate: L-aspartate carbamoyl transferase in the uteri of immature rats, J. Biol. Chem. 239: 3321–3324.PubMedGoogle Scholar
  110. Valadares, J. R. E., Singhal, R. L., and Parulekar, M. R., 1968, 170-Estradiol: Inductor of uterine hexokinase, Science 159: 990–991.Google Scholar
  111. Vertes, M., Kornyei, J., Nagy, L., Vertes, Z., and Kovacs, S., 1981, Stimulation by oestradiol of soluble-protein synthesis in rat hypothalamus. Mol. Cell. Endocrinol. 22: 329–338.PubMedCrossRefGoogle Scholar
  112. Vokaer, A., Iacobelli, S., and Kram, R., 1974, Phosphoprotein phosphatase activity associated with estrogen-induced protein in rat uterus. Proc. Natl. Acad. Sci USA 71: 4482–4486.PubMedCrossRefGoogle Scholar
  113. Walker, M. D., and Kaye, A. M., 1981, mRNA for the rat uterine estrogen induced protein: Translation in vitro and regulation by estrogen, J. Biol. Chem. 256: 23–26.Google Scholar
  114. Walker, M. D., Gozes, I., Kaye, A. M., Reiss, N., and Littauer, U. Z., 1976, The “estrogen induced protein”: Quantitation by autoradiography of polyacrylamide gels, J. Steroid Biochem. 7: 1083–1085.PubMedCrossRefGoogle Scholar
  115. Walker, M. D., Kaye, A. M., and Fridlender, B. R., 1978, Age-dependent stimulation by estradiol 170 of DNA polymerase a in immature rat uterus, FEBS Lett. 92: 25–28.PubMedCrossRefGoogle Scholar
  116. Walker, M. D., Negreanu, V., Gozes, I., and Kaye, A. M., 1979, Identification of the “estrogen-induced protein” in uterus and brain of untreated immature rats, FEBS Len. 98:187–191. Weissbach, A., 1977, Eukaryotic DNA polymerases, Annu. Rev. Biochem. 46: 25–47.Google Scholar
  117. Wood, T., 1963, Adenosine triphosphate-creatine phosphotransferase from ox brain: Purification and isolation, Biochem. J. 87: 453–462.Google Scholar
  118. Wood, T., 1964, The purification of enolase from cerebral tissue, Biochem. J. 91: 453–460.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Alvin M. Kaye
    • 1
  1. 1.Department of Hormone ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations