A Cellular Polyprotein from Bovine Hypothalamus

Structural Elucidation of the Precursor to the Nonapeptide Hormone Arginine Vasopressin
  • Dietmar Richter
  • Hartwig Schmale
Part of the Biochemical Endocrinology book series (BIOEND)


Although it has been recognized for a number of years that hormones may exert their effect on target tissues by acting on gene expression either directly, or indirectly, via a second messenger, relatively very little is known about the mechanisms involved. This situation has been made more complicated by the recent discoveries of the cellular polyproteins (Richter et al., 1980a), where a single primary translation product gives rise to several functionally distinct biological entities by a subsequent series of specific pmteolytic cleavages. The best-described example to date is opiocortin, which as a single polypeptide is a precursor to adrenocorticotropin, the endorphins, and the melanocyte-stimulating hormones. There it has been demonstrated that regulation of peptide hormone synthesis takes place not only at the transcriptional but also at the posttranslational level by differential processing and modification of the primary translation product (Herbert, 1981). Since the synthesis of peptide hormones is recognized as being itself under hormonal control, if only in the form of an end product negative-feedback inhibition, these polyproteins provide an important model system in which to examine regulation of gene expression (Numa and Nakanishi, 1981).


Arginine Vasopressin Primary Translation Product Rabbit Reticulocyte Lysate System Bovine Hypothalamus Tryptic Peptide Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brownstein, M. J., and Gainer, H., 1977, Neurophysin biosynthesis in normal rats and in rats with hereditary diabetes insipidus, Proc. Natl. Acad. Sci. USA 74: 4046.PubMedCrossRefGoogle Scholar
  2. Brownstein, M. J., Russell, J. T., and Gainer, H., 1980, Synthesis, transport, and release of posterior pituitary hormones, Science 207: 373.PubMedCrossRefGoogle Scholar
  3. Chen-Kiang, S., Stein, S., and Udenfriend, S., 1979, Gel electrophoresis of fluorescent labeled cyanogen bromid cleavage products at the submicrogram level, Anal. Biochem. 95: 122.Google Scholar
  4. Guidice, L. C., and Chaiken, I. M., 1979, Immunological and chemical identification of a neurophysincontaining protein coded by messenger RNA from bovine hypothalamus, Proc. Natl. Acad. Sci. USA 76: 3800.Google Scholar
  5. Herbert, E., 1981, Discovery of pro-opiomelanocortin—a cellular polyprotein, Trends Biochem. Sci. 6: 184.Google Scholar
  6. Holwerda, D. A., 1972, A glycopeptide from the posterior lobe of pig pituitaries, Eur. J. Biochem. 28: 340.Google Scholar
  7. Ivell, R., Schmale, H., and Richter, D., 1981, Glycosylation of the arginine vasopressin/neurophysin II common precursor, Biochem. Biophys. Res. Commun. 102: 1230.CrossRefGoogle Scholar
  8. Kozak, M., 1978, How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell 15: 1109.PubMedCrossRefGoogle Scholar
  9. Land, H., Grez, M., Hauser, M., Lindemaier, W., and Schütz, G., 1981, 5’ Terminal sequences of eukaryotic mRNA can be cloned with high efficiency. Nucleic Acid Res. 9: 2251.Google Scholar
  10. Land, H. Schütz, G., Schmale, H., and Richter, D., 1982, Nucleotide sequence of cloned DNA encoding the bovine arginine vasopressin–neurophysin II precursor, Nature 295: 299.Google Scholar
  11. Lauber, M., Camier, M., and Cohen, P., 1979, Immunological and biochemical characterization of distinct high molecular weight forms of neurophysin and somatostatin in mouse hypothalamus extracts, FEBS Letts. 97: 343.CrossRefGoogle Scholar
  12. Lin, C., Joseph-Bravo, P., Sherman, T., Chan, L., and McKelvy, J. F., 1979, Cell-free synthesis of putative neurophysin precursors from rat and mouse hypothalamic poly(A)-RNA, Biochem. Biophys. Res. Commun. 89: 943.CrossRefGoogle Scholar
  13. Maxam, A., and Gilbert, W., 1977, A new method for sequencing DNA, Proc. Natl. Acad. Sci. USA 74: 560.PubMedCrossRefGoogle Scholar
  14. Nakanishi, S., Inoüe, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S., 1979, Nucleotide sequence of cloned cDNA for bovine corticotropin-ß-lipotropin precursor, Nature 278: 423.PubMedCrossRefGoogle Scholar
  15. Numa, S., and Nakanishi, S., 1981, Corticotropin-ß-lipotropin precursor—a multi-hormone precursor—and its gene, Trends Biochem. Sci. 6: 274.Google Scholar
  16. Richter, D., Iveli, R., and Schmale, H., 1980a, Neuropolypeptides illustrate a new perspective in mammalian protein synthesis—the composite common precursor, in: Biosynthesis, Modification, and Processing of Cellular and Viral Polyproteins ( G. Koch and D. Richter, eds.), pp. 5–13, Academic Press, New York.Google Scholar
  17. Richter, D., Schmale, H., Ivell, R., and Schmidt, C., 1980b, Hypothalamic mRNA-directed synthesis of neuropolypeptides: Immunological identification of precursors to neurophysin II/arginine vasopressin and to neurophysin I/oxytocin, in: Biosynthesis, Modification, and Processing of Cellular and Viral Polyproteins ( G. Koch and D. Richter, eds.), pp. 43–66, Academic Press, New York.Google Scholar
  18. Richter, D., Schmale, H., Ivell, R., and Kalthoff, H., 1982, Cellular polyproteins from pituitary and hypothalamus: Composite precursors to oligopeptide hormones, in: Hormonally Active BrainGoogle Scholar
  19. Peptides: Structure and Function (K. W. McKems and V. Pantie, eds.), pp. 581–598, Plenum Press, New York.Google Scholar
  20. Russell, J. T., Brownstein, M. J., and Gainer, H., 1979, Trypsin liberates an arginine vasopressinlike peptide and neurophysin from a Mr 20,000 putative common precursor, Proc. Natl. Acad. Sci. USA 76: 6086.PubMedCrossRefGoogle Scholar
  21. Russell, J. T., Brownstein, M. J., and Gainer, H., 1981, Biosynthesis of neurohypophyseal polypeptides: The order of peptide components in pro-pressophysin and pro-oxyphysin, Neuropeptides 2: 59–65.CrossRefGoogle Scholar
  22. Sachs, H., Fawcett, P., Takabatake, Y., and Portanova, R., 1969, Biosynthesis and release of vasopressin and neurophysin, Recent Prog. Horm. Res. 25: 447.Google Scholar
  23. Schmale, H., and Richter, D., 1980, In vitro biosynthesis and processing of composite common precursors containing amino acid sequences identified immunologically as neurophysin I/oxytocin and neurophysin II/arginine vasopressin, FEBS Letts. 121: 358.CrossRefGoogle Scholar
  24. Schmale, H., and Richter, D., 1981a, Immunological identification of a common precursor to arginine vasopressin and neurophysin II synthesized by in vitro translation of bovine hypothalamic mRNA, Proc. Natl. Acad. Sci. USA 78: 766.PubMedCrossRefGoogle Scholar
  25. Schmale, H., and Richter, D., 1981b, RNA-directed synthesis of a common precursor to the nonapeptide arginine vasopressin and neurophysin II: Immunological identification and tryptic peptide mapping, Hoppe Seylers Z. Physiol. Chem. 362: 1551.CrossRefGoogle Scholar
  26. Schmale, H., and Richter, D., 1981c, Tryptic release of authentic arginine vasopressine from a composite arginine vasopressin/neurophysin II precursor, Neuropeptides 2: 47.CrossRefGoogle Scholar
  27. Schmale, H., Leipold, B., and Richter, D., 1979, Cell-free translation of bovine hypothalamic mRNA. Synthesis and processing of the prepro-neurophysin I and II, FEBS Letts. 108: 311.CrossRefGoogle Scholar
  28. Seidah, N. G., Rochemont, J., Hamelin, J., Banjannet, S., and Chrétien, M., 1981, The missing fragment of the pro-sequence of human pro-opiomelanocortin sequence and evidence for C-terminal amidation, Biochem. Biophys. Res. Commun. 102: 710.CrossRefGoogle Scholar
  29. Smyth, D. G., and Massey, D. E., 1979, A new glycopeptide in pig, ox, and sheep pituitary, Biochem. Biophys. Res. Commun. 87: 1006.CrossRefGoogle Scholar
  30. Suchanek, G., and Kreil, G., 1977, Translation of Melittin messenger RNA in vitro yields a product terminating with glutaminylglycine rather than with glutaminamide, Proc. Natl. Acad. Sci. USA 74: 975.PubMedCrossRefGoogle Scholar
  31. Valtin, H., Stewart, J., and Sokol, H. W., 1974, Genetic control of the production of posterior pituitary principles, in: Handbook of Physiology Vol. 7, p. 737, Williams & Wilkens, Baltimore. Wuu, T. C., and Crum, S. E., 1976, Amino acid sequence of bovine neurophysin II, Biochem. Biophys. Res. Commun. 68: 634.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Dietmar Richter
    • 1
  • Hartwig Schmale
    • 1
  1. 1.Institut für Physiologische Chemie, Abteilung ZellbiochemieUniversität HamburgHamburg 20G.F.R.

Personalised recommendations