Brain Mechanisms of Visual Localization by Frogs and Toads

  • David J. Ingle
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


Classical ethology provides two fundamental themes which remain at the heart of current research in neuroethology. First, is the assumption that events in the sensory “Umwelt” activate behavior via narrowly-tuned stimulus filters — i.e., that relatively few distinctive features determine the recognition of food, mate, parent or enemy. The term “innate releasing mechanisms” is probably too narrow to characterize the complexity of sensory recognition schema for birds and mammals, but it still seems to apply to many behaviors of fishes, amphibians and reptiles. As an example, the feeding behavior in newly metamorphosed froglets (Ingle, unpubl. data) seems to emerge fullblown: with no prior experience as tadpoles in pursuing visual objects, they accurately turn and snap at small moving prey. These movement sequences also fit the original notion of a “fixed action pattern”, which is the second main inheritance from classical ethology. During prey-catching the frog’s coordination of head, mouth, tongue and leg movements is highly stereotyped. The patterns predictable from knowing the radial location, height and distance of the prey. Although the behavior appears rigid, it is fast and accurate: well-adapted for the rigorous competition for food and survival among a large population with limited resources.


Avoidance Behavior Optic Tectum Visual Localization Optokinetic Nystagmus Retinal Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K., 1949, Der visuelle Greifreflex. Helv. Physiol. Acta, 7:112–134.Google Scholar
  2. Arbib, M.A., 1981, Rana computatrix:An evolving model of visuomotor coordination in frog and toad, Computer and Information Science Technical Report No. 81-6, Univ. Massachusetts.Google Scholar
  3. Bechterew, W., 1884, Über die Function der Vierhügel. Pflügers Arch. ges. Physiol. Menschen und Tiere, 33:413–439.CrossRefGoogle Scholar
  4. Collett, T., 1977, Stereopsis in toads. Nature, 267:349–351.PubMedCrossRefGoogle Scholar
  5. Collewijn, H., 1975, Oculomotor areas in the rabbit’s midbrain and pretectum. J. Neurobiol., 6:3–22.PubMedCrossRefGoogle Scholar
  6. Comer, C., and Grobstein, P., 1978, Prey acquisition in atectal frogs. Brain Res., 153:217:221.Google Scholar
  7. Ewert, J.-P., 1967, Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Z. Vergl. Physiol., 54:455–481.CrossRefGoogle Scholar
  8. Ewert, J.-P., 1968, Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z. Vergl. Physiol., 61:41–70.Google Scholar
  9. Ewert, J.-P., 1971, Single-unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z. vergl. Physiol., 74:81–102.CrossRefGoogle Scholar
  10. Ewert, J.-P., 1983, Tectal mechanisms underlying prey-catching and avoidance behaviors in toads, in “Neurology of the Optic Tectum”, H. Vanegas, ed., Plenum Press, New York.Google Scholar
  11. Ewert, J.-P., and Gebauer, L., 1973, Größenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). J. Comp. Physiol., 85:303–315.CrossRefGoogle Scholar
  12. Ewert, J.-P., and von Seelen W., 1974, Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik, 14:167–183.PubMedCrossRefGoogle Scholar
  13. Ewert, J.-P., and von Wietersheim, A., 1974a, Musterauswertung durch Tectum-und Thalamus/Praetectum-Neurone im visuellen System der Kröte Bufo bufo (L.). J. Comp. Physiol., 92:131–148.CrossRefGoogle Scholar
  14. Ewert, J.-P., and von Wietersheim, A., 1974b, Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber visuellen Mustern bei der Kröte (Bufo bufo L.). J. Comp. Physiol., 92:149–160.CrossRefGoogle Scholar
  15. Ewert, J.-P., Hock, F.J., and von Wietersheim, A., 1974, Thalamus/ Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L.). J. Comp. Physiol., 92:343–356.CrossRefGoogle Scholar
  16. Fite, K.V., and Scalia, F., 1976, Central visual pathways in the frog, in “The Amphibian Visual System”, K.V. Fite, ed., Academic Press, New York.Google Scholar
  17. Fontera, J.G., 1952, A study of the anuran diencephalon. J. Comp. Neurol., 96:1–69.CrossRefGoogle Scholar
  18. Fuller, P.M., and Ebbesson, S.O.E., 1973, Central projections of the trigeminal nerve in the bullfrog (Rana catesbeiana). J. Comp. Neurol., 152:193–200.PubMedCrossRefGoogle Scholar
  19. Glasser, S., Fraser, J., and Ingle, D., 1982, Vertical migration of retinal axons in the frog’s optic tectum following laminar denervation. (submitted).Google Scholar
  20. Grüsser, O.-J., and Grüsser-Cornehls, U., 1976, Physiology of the anuran visual system, in “Frog Neurobiology”, R. Llinas and W. Precht, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  21. Hess, W.R., Burgi, S., and Bucher, V., 1946, Motorische Funktion des Tektal-und Tegmentalgebietes. Monatsschr. Psychiatr. Neurol., 112:1–52.PubMedCrossRefGoogle Scholar
  22. Holcombe, V., and Hall, W.C., 1981, Laminar origin and distribution of crossed tectoreticular pathways. J. Neurosci., 1:1103–1112.PubMedGoogle Scholar
  23. Ingle, D., 1968, Visual releasers of prey catching behavior in frogs and toads. Brain, Behav. Evol., 1:500–518.CrossRefGoogle Scholar
  24. Ingle, D., 1970, Visuomotor functions of the frog optic tectum. Brain, Behav. Evol., 3:57–71.CrossRefGoogle Scholar
  25. Ingle, D., 1971a, Discrimination of edge-orientation by frogs. Vision Res. 11: 1365–1367.PubMedCrossRefGoogle Scholar
  26. Ingle, D., 1971b, Prey catching behavior of anurans toward moving and stationary objects. Vision Res. Suppl., 3:447–456.CrossRefGoogle Scholar
  27. Ingle, D., 1971c, A possible behavioral correlate of delayed retinal discharge in Anurans. Vision Res., 11:167–168.PubMedCrossRefGoogle Scholar
  28. Ingle, D., 1973a, Two visual systems in the frog. Science, 81:1053–1055.CrossRefGoogle Scholar
  29. Ingle, D., 1973b, Evolutionary perspectives on the function of the optic tectum. Brain, Behav. Evol., 8:211–237.CrossRefGoogle Scholar
  30. Ingle, D., 1976, Spatial visi.on in anurans, in: “The Amphibian Visual System”, K.V. Fite, ed., Academic Press, New York.Google Scholar
  31. Ingle, D., 1977, Detection of stationary objects by frogs following optic tectum ablation. J. Comp. Physiol. Psychol., 91:1359–1364.PubMedCrossRefGoogle Scholar
  32. Ingle, D., 1979, Behavioral analysis of frogs with compressed tectal projections, in “Specificity and Plasticity of Retinotectal Connections”, M.V. Edds, R.M. Gaze, G.E. Schneider and L.N. Irwin, eds., Neurosci. Res. Program Bull. Vol.17, MIT Press, Cambridge, Mass.Google Scholar
  33. Ingle, D., 1980, The frog’s detection of stationary objects following lesions of the pretectum. Behav. Brain Res., 1:139–163.PubMedCrossRefGoogle Scholar
  34. Ingle, D., 1981, New methods for analysis of vision in the gerbil, in “The Rodent Visual System”, M.A. Goodale, ed., Special Issue of Behav. Brain Res., 3:151–173.Google Scholar
  35. Ingle, D., 1982, The organization of visuomotor behaviors in vertebrates, in “The Analysis of Visual Behavior”, D. Ingle, M. Goodale and R. Mansfield, eds., MIT Press, Cambridge, Mass.Google Scholar
  36. Ingle, D., and Cook, J., 1977, The effect of viewing distance upon size preference of frogs for prey. Vision Res., 17:1009–1014.PubMedCrossRefGoogle Scholar
  37. Ingle, D., and Quinn, S., 1982a, Efferent functions of the frog’s tectum: Identification vs. localization of prey, (submitted).Google Scholar
  38. Ingle, D., and Quinn, S., 1982b., Topographic order in pretectal and anterior thalamic afferents to the frog’s optic tectum, (in prep.).Google Scholar
  39. Ingle, D., Cheal, M., and Dizio, P., 1979, Cine analysis of visual orientation and pursuit by the Mongolian gerbil. J. Comp. Physiol. Psychol., 93:919–928.CrossRefGoogle Scholar
  40. Katte, O., and Hoffmann, K.-P., 1980, Direction specific neurons in the pretectum of the frog (Rana esculenta). J. Comp. Physiol., 140:53–57.CrossRefGoogle Scholar
  41. Kicliter, E., 1973, Flux, wavelength and movement discrimination in frogs: Forebrain and midbrain contributions. Brain, Behav. Evol., 8:340–365.CrossRefGoogle Scholar
  42. Kicliter, E., Misantone, L.J., and Stelzner, D.J., 1974, Neuronal specificity and plasticity in frog visual system: Anatomical correlates. Brain Res., 82:293–297.PubMedCrossRefGoogle Scholar
  43. Lázár, G., 1969, Efferent pathways of the optic tectum in the frog. Acta Biol. (Szeged), 20:171–183.Google Scholar
  44. Lázár, G., 1971, The projection of the retinal quadrants on the optic centers in the frog: A terminal degeneration study. Acta Morphol. Acad. Sci. Hung., 19:325–334.PubMedGoogle Scholar
  45. Lázár, G., 1973, Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain, Behav. Evol., 5:443–460.Google Scholar
  46. Lázár, G., 1979, Organization of the frog visual system, in “Recent Developments of Neurobiology in Hungary” Vol.8, K. Lissak, ed., Akademiai Kiado, Budapest.Google Scholar
  47. Lázár, G., and Székely, G., 1967, Golgi studies on the optic center of the frog. J. Hirnforsch., 9:329–344.PubMedGoogle Scholar
  48. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., and Pitts, W.H., 1959, What the frog’s eye tells the frog’s brain. Proc. IRE, 47:1940–1951.CrossRefGoogle Scholar
  49. Lock, A., and Collett, T., 1979, A toad’s devious approach to its prey: A study of some complex uses of depth vision. J. Comp. Physiol., 131:179–189.CrossRefGoogle Scholar
  50. Merker, B.H., 1980, “The Sentinal Hypothesis: A Role for the Mammalian Superior Colliculus”, Ph.D. Thesis, Department of Psychology, Massachusetts Institute of Technology.Google Scholar
  51. Muntz, W.R.A., 1962a, Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system. J. Neurophysiol., 25:699–711.PubMedGoogle Scholar
  52. Muntz, W.R.A., 1962b, Effectiveness of different colors of light in releasing the positive phototactic behavior of frogs, and a possible function of the retinal projection to the diencephalon. J. Neurophysiol., 25:712–720.Google Scholar
  53. Neary, T.J., and Northcutt, R.G., 1979, Organization of the diencephalon of the bullfrog Rana catesbeiana. Anat. Rec, 193:635.Google Scholar
  54. Neary, T.J., and Wilczynski, W., 1977, Anterior and posterior thalamic afferents in the bullfrog. Soc. Neurosci. Abstr., 5:144.Google Scholar
  55. Northmore, D.P.M., 1981, Visual localization after rearrangements of the retinotectal map in fish. Nature, 293:142–144.PubMedCrossRefGoogle Scholar
  56. Raczkowski, D., Casagrande, V.A., and Diamond, I.T., 1976, Visual neglect in the tree shrew after interruption of the decending projections of the deep superior colliculus. Exp. Neurol., 50:14–29.PubMedCrossRefGoogle Scholar
  57. Rehn, B., 1977, “Cerebrale Repräsentation des Fluchtverhaltens der Erdkröte (Bufo bufo)”, Ph.D. Thesis, Techn. Univ. of Darmstadt.Google Scholar
  58. Rubinson, E., 1968, Projections of the tectum opticum of the frog. Brain, Behav. Evol., 1:529–561.CrossRefGoogle Scholar
  59. Scalia, F., and Coleman, D.R., 1975, Identification of telencephalic-afferent thalamic nuclei associated with the visual system of the frog, Soc. Neurosci. Abstr., 1:46.Google Scholar
  60. Scalia, F., and Fite, K.V., 1974, A retinotopic analysis of the central connections of the optic nerve in the frog. J. Comp. Neurol., 158:455–478.PubMedCrossRefGoogle Scholar
  61. Scalia, F., and Gregory, K., 1970, Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain, Behav. Evol., 3:16–29.CrossRefGoogle Scholar
  62. Schneider, D., 1954, Beitrag zu einer Analyse des Beute-und Flucht-verhaltens einheimischer Anuren. Biol. Zentralbl., 73:225–282.Google Scholar
  63. Schneider, G.E., 1973, Early lesions of superior colliculus: Factors affecting the formation of abnormal retinal projections. Brain, Behav. Evol., 8:73–109.CrossRefGoogle Scholar
  64. Sperry, R.W., 1945, Restoration of vision after crossing of optic nerves and after contralateral transplantation of eye. J. Neurophysiol., 8:15–28.Google Scholar
  65. Székely, G., Setalo, G., and Lazar, G., 1974, Fine structure of the frog’s optic tectum: Optic fiber termination layers. J. Hirnforsch., 14:189–225.Google Scholar
  66. Trachtenberg, M.C., and Ingle, D., 1974, Thalamo-tectal projections in the frog. Brain Res., 79:419–430.PubMedCrossRefGoogle Scholar
  67. Weerasuriya, A., and Ewert, J.-P., 1981, Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J. Comp. Physiol., 144:429–434.CrossRefGoogle Scholar
  68. Wilczynski, W., and Northcutt, R.G., 1978, Afferents to the optic tectum of the leopard frog: An HRP study. J. Comp. Neurol., 173:219–229.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David J. Ingle
    • 1
  1. 1.Department of PsychologyBrandeis UniversityWalthamUSA

Personalised recommendations