Implications of Insect Neuroethology for Studies on Vertebrates

  • Franz Huber
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


Comparative ethological studies clearly indicate that different animal species have developed specific behavioral strategies within their ecological constraints. It is the major goal of neuroethology to provide an understanding of these behavioral strategies in terms of the operations of their nervous systems at all levels. This goal also holds for Insect Neuroethology.


Thoracic Ganglion Courtship Song Calling Song Female Cricket Conspecific Song 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon, J., 1977, “The Primary Projections and an Interneurone of the Wind-Sensitive Hairs of the Locust, Schistocerca gregaria”, Ph.D. Thesis, University of Manchester.Google Scholar
  2. Bacon, J., 1980, An homologous interneurone in a locust, a cricket and a mantid. Verh. Dtsch. Zool. Ges., 1980:300, Fischer-Verlag, Stuttgart.Google Scholar
  3. Bacon, J., and Möhl, B., 1979, Activity of an identified wind interneurone in a flying locust, Nature. 278:638–640.CrossRefGoogle Scholar
  4. Bacon, J., and Mohl, B., 1982, The TCG wind-sensitive interneurone in the locust I: The wind-sensitive organs and the TCG’s activity in straight flight. J. Comp. Physiol., (submitted).Google Scholar
  5. Bacon, J., and Tyrer, N.M., 1978, The tritocerebral commissure giant (TCG): A bimodal interneurone in the locust, Schistocerca gregaria. J. Comp. Physiol., 126:317–325.CrossRefGoogle Scholar
  6. Bacon, J., and Tyrer, N.M., 1979, Wind interneurone input to flight motor neurones in the locust, Schistocerca gregaria. Naturwissenschaften, 66:116.CrossRefGoogle Scholar
  7. Bentley, D.R., 1971, Genetic control of an insect neuronal network. Science, 174:1139–1141.PubMedCrossRefGoogle Scholar
  8. Bentley, D.R., 1975, Single gene cricket mutations: Effects on behavior, sensilla, sensory neurons, and identified interneurons. Science, 187:760–763.PubMedCrossRefGoogle Scholar
  9. Bentley, D.R., 1977, Control of cricket song patterns by descending interneurons. J. Comp. Physiol., 116:19–38.CrossRefGoogle Scholar
  10. Bentley, D.R., and Konishi, M., 1978, Neural control of behavior. Ann. Rev. Neurosci., 1:35–59.PubMedCrossRefGoogle Scholar
  11. Benzer, S., 1971, From the gene to behavior. J. Amer. Med. Ass., 218:1015–1022.CrossRefGoogle Scholar
  12. Benzer, S., 1973, Genetic dissection of behavior. Sci. Amer., 229:24–37.PubMedCrossRefGoogle Scholar
  13. Bishop, C.A., and O’Shea, M., 1982, Neuropeptide proctolin: Immunocytochemical mapping of neurons in the central nervous system of the cockroach. J. Comp. Neurol., (in press).Google Scholar
  14. Block, G.D., and Page, T.L., 1978, Circadian pacemakers in the nervous system. Ann. Rev. Neurosci., 1:19–34.PubMedCrossRefGoogle Scholar
  15. Boyan, G.S., 1980, Auditory neurones in the brain of the cricket Gryllus bimaculatus (DeGeer). J. Comp. Physiol., 140:81–93.CrossRefGoogle Scholar
  16. Boyan, G.S., 1981, Two-tone suppression of an identified auditory neurone in the brain of the cricket Gryllus bimaculatus (DeGeer). J. Comp. Physiol., 144:117–125.CrossRefGoogle Scholar
  17. Boyan, G.S., and Williams, J.L.D., 1982, Auditory neurones in the brain of the cricket Gryllus bimaculatus (DeGeer): Ascending interneurones. J. Insect Physiol., (in press).Google Scholar
  18. Burrows, M., 1973, Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J. Comp. Physiol., 82:59–78.CrossRefGoogle Scholar
  19. Burrows, M., 1973, The morphology of an elevator and a depressor motoneuron of the hindwing of a locust. J. Comp. Physiol., 83:165–178.CrossRefGoogle Scholar
  20. Burrows, M., 1978, Local interneurones and integration in locust ganglia, Verh. Dtsch. Zool. Ges., 1978:68-79, Fischer-Verlag, Stuttgart.Google Scholar
  21. Burrows, M., 1980, The control of sets of motoneurones by local interneurones in the locust. J. Physiol., 298:213–233.PubMedGoogle Scholar
  22. Burrows, M., and Rowell, C.H.F., 1973, Connections between descending visual interneurons and metathoracic motoneurons in the locust. J. Comp. Physiol., 85:221–234.CrossRefGoogle Scholar
  23. Capranica, R.R., 1977, Auditory processing in anurans, in “Symposium on Auditory Processing and Animal Sound Communication”. Federation Proc, 37:2324–2328.Google Scholar
  24. Carew, T.J., Castellucci, V.F., Walters, E.T., and Kandel, E.R., 1980, Behavioral and cellular studies of learning and memory in Aplysia. Verh. Dtsch. Zool. Ges., 1980:241-249, Fischer-Verlag, Stuttgart.Google Scholar
  25. Carew, T.J., Walters, E.T., and Kandel, E.R., 1981, Associative learning in Aplysia: Cellular correlates supporting a conditioned fear hypothesis. Science, 211:501–504.PubMedCrossRefGoogle Scholar
  26. Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals. Science, 210:492–498.PubMedCrossRefGoogle Scholar
  27. Ebbesson, S.O.E., 1980, The pancellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity. Cell Tissue Res., 213:179–212.PubMedGoogle Scholar
  28. Eibl, E., and Huber, F., 1979, Central projections of tibial sensory fibers within the three thoracic ganglia of crickets (Gryllus campestris L., Gryllus bimaculatus DeGeer). Zoomorphologie, 92:1–17.CrossRefGoogle Scholar
  29. Eisner, N., 1968, Die neuromuskulären Grundlagen des Werbeverhaltens der roten Keulenheuschrecke Gomphocerippus rufus L. Z. vergl. Physiol., 60:308–350.CrossRefGoogle Scholar
  30. Elsner, N., 1970, Die Registrierung der Stridulationsbewegungen bei der Feldheuschrecke Chorthippus mollis mit Hilfe von Hallgeneratoren. Z. vergl. Physiol., 68:417–428.CrossRefGoogle Scholar
  31. Elsner, N., 1974, Neural economy: Bifunctional muscles and common central pattern elements in leg and wing stridulation of the grasshopper Stenobothrus rubicundus Germ. (Orthoptera: Acrididae). J. Comp. Physiol., 89:227–236.CrossRefGoogle Scholar
  32. Eisner, N., 1974, Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae) I: Song patterns and stridulatory movements. J. Comp. Physiol., 88:67–102.CrossRefGoogle Scholar
  33. Eisner, N., 1975, Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae) II: Neuromuscular activity underlying stridulation. J. Comp. Physiol., 97:291–322.CrossRefGoogle Scholar
  34. Eisner, N., and Huber, F., 1969, Die Organisation des Werbegesanges der Heuschrecke (Gomphocerippus rufus L.) in Abhängigkeit von zentralen und peripheren Bedingungen. Z. vergl. Physiol., 65:389–423.CrossRefGoogle Scholar
  35. Eisner, N., and Popov, A.V., 1978, Neuroethology of acoustic communication. Adv. Insect Physiol., 13:229–335.CrossRefGoogle Scholar
  36. Erber, J., 1978, Response characteristics and after effects of multimodal neurons in the mushroom body area of the honey bee. Physiol. Entomol., 3:77–89.CrossRefGoogle Scholar
  37. Erber, J., 1980, Neural correlates of non-associative and associative learning in the honeybee. Verh. Dtsch. Zool. Ges., 1980:250-261, Fischer-Verlag, Stuttgart.Google Scholar
  38. Esch, H., Huber, F., and Wohlers, D.W., 1980, Primary auditory neurons in crickets: Physiology and central projections, Journal, 137:27–38Google Scholar
  39. Evans, P.D., 1980, Biogenic amines in the insect central nervous system. Adv. Insect Physiol., 15:317–473.CrossRefGoogle Scholar
  40. Ewert, J.-P., 1980, “Neuroethology”, Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  41. Ewing, A.W., 1969, The genetic basis of sound production in Drosophila pseudoobscura and D.persimilis. Anim. Behav., 17:555–560.PubMedCrossRefGoogle Scholar
  42. Fentress, J.C, ed., 1976, Simpler networks and behavior, Sinauer Ass. Inc, Sunderland Mass.Google Scholar
  43. Gaude, H., 1975, Histologische Untersuchungen zur Struktur und Funktion des neurosekretorisehen Systems der Hausgrille Acheta domesticus L. Zool. Anz. Jena, 194:151–164.Google Scholar
  44. Goodman, C.S., 1977, Constancy and uniqueness in a large population of small interneurons. Science, 193:502–504.CrossRefGoogle Scholar
  45. Goodman, C.S., 1978, Isogenic locusts: Genetic variability in the morphology of identified neurons. J. Comp. Neurol., 182:681–706.PubMedCrossRefGoogle Scholar
  46. Goodman, C.S., and Heitler, W.J., 1977, Physiology of identified neurons in isogenic locusts, Genetic basis of variability in threshold. J. Comp. Physiol., 117:183–207.CrossRefGoogle Scholar
  47. Hedwig, B., and Eisner, N., 1980, A neuroethological analysis of sound production in the acridid grasshopper Omocestus viridulus. Adv. Physiol. Sci. Neurobiol. Invertebrates, 23:467–494.Google Scholar
  48. Heisenberg, M., 1979, Genetic approach to a visual system, in “Handbook of Sensory Physiology” Vol.VII/6a, Springer, Berlin, Heidelberg, New York.Google Scholar
  49. Helversen, D.v., 1972, Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J. Comp. Physiol., 81:381–422.CrossRefGoogle Scholar
  50. Helversen, O.V., and Elsner, N., 1977, The stridulatory movements of acridid grasshoppers recorded with an optoelectronic device. J. Comp. Physiol., 122:53–64.CrossRefGoogle Scholar
  51. Helversen, D.V., and Helversen, O.v., 1975, Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae) I: Der Gesang von Artbastarden zwischen Chorthippus biguttulus and Ch.mollis, J. Comp. Physiol., 104:273–299; II: Das Lautschema von Artbastarden zwischen Chorthippus biguttulus und Ch.mollis. J. Comp. Physiol., 104:301-323.CrossRefGoogle Scholar
  52. Hoyle, G., 1964, Exploration of neuronal mechanisms underlying behavior in insects, in “Neural Theory and Modeling”, R.F. Reiss, ed., Stanford Univ. Press.Google Scholar
  53. Hoyle, G., 1966, An isolated insect ganglion-nerve-muscle preparation. J. exp. Biol., 44:413–417.PubMedGoogle Scholar
  54. Hoyle, G., 1966, Functioning of the inhibitory conditioning axon innervating insect muscles. J. exp. Biol., 44:429–453.PubMedGoogle Scholar
  55. Hoyle, G., 1970, Cellular mechanisms underlying behavior: Neuroethology. Adv. Insect Physiol., 7:349–444.CrossRefGoogle Scholar
  56. Hoyle, G., 1976, Approaches to understanding the neurophysiological bases of behavior, in “Simpler Networks and Behavior”, J.C. Fentress, ed., Sinauer Ass. Inc., Sunderland, Mass.Google Scholar
  57. Huber, F., 1955, Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z. Tierpsychol., 12:12–48.CrossRefGoogle Scholar
  58. Huber, F., 1959, Auslösung von Bewegungsmustern durch elektrische Reizung des Oberschlundganglions bei Orthopteren (Saltatoria: Gryllidae, Acridiidae). Zool. Anz. Suppl., 23:248–269.Google Scholar
  59. Huber, F., 1960, Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae). Z. vergl. Physiol., 43:359–391.CrossRefGoogle Scholar
  60. Huber, F., 1960, Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und der Lauterzeugung der Grillen. Z. vergl. Physiol., 44:60–132.CrossRefGoogle Scholar
  61. Huber, F., 1965, Aktuelle Probleme in der Physiologie des Nervensystems der Insekten. Naturwiss. Rundschau, 18:143–156.Google Scholar
  62. Huber, F., 1978, The insect nervous system and insect behaviour. Anim. Behav., 26:969–981.CrossRefGoogle Scholar
  63. Huber, F., 1978, Nervensystem und Verhalten: Beispiele aus der Welt der Insekten, in “Die Psychologie des 20. Jahrhunderts”, Kindler-Verlag, Zürich.Google Scholar
  64. Huber, F., 1980, Basic research in zoology from the viewpoint of an insect biologist. Verh. Dtsch. Zool. Ges., 1980:12-37, Fischer Verlag, Stuttgart.Google Scholar
  65. Hutchings, M., and Lewis, B., 1981, Response properties of primary auditory fibers in the cricket Teleogryllus oceanicus (Le Guillou). J. Comp. Physiol., 143:129–134.CrossRefGoogle Scholar
  66. Iversen, L.L., Nicoll, R.A., and Vale, W.W., 1978, Neurobiology of peptides. Neurosci. Res. Prog., 16:217–370.Google Scholar
  67. Jacobs, W., 1950, Vergleichende Verhaltensstudien an Feldheuschrecken. Z. Tierpsychol., 7:169–216.Google Scholar
  68. Kämper, G., and Dambach, M., 1981, Responses of the cercus to giant interneuron system in crickets to species-specific song. J. Comp. Physiol., 141:311–317.CrossRefGoogle Scholar
  69. Kalmring, K., Lewis, B., and Eichendorf, A., 1978, The physiological characteristics of primary sensory neurons of the complex tibial organ of Decticus verrucivorus L. (Orthoptera, Tettgonioidae). J. Comp. Physiol., 127:109–121.CrossRefGoogle Scholar
  70. Kandel, E.R., 1976, “Cellular Basis of Behavior”, Freeman, San Francisco.Google Scholar
  71. Kandel, E.R., 1978, “A Cell-Biological Approach to Learning”, Grass-Lecture Monograph 1. Society for Neuroscience, Bethesda, Maryland.Google Scholar
  72. Kandel, E.R., 1979, Psychotherapy and the single synapse: The Impact of Psychiatric thought on neurobiologic research. New Eng. J. Med., 301:1028–1037.PubMedCrossRefGoogle Scholar
  73. Klein, U., 1982, The articulation of cricket palps: Morphology and movement patterns in behavior. Physiol. Entomol., (in press).Google Scholar
  74. Kleindienst, H.U., Koch, U.T., and Wohlers, D.W., 1981, Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J. Comp. Physiol., 141:283–296.CrossRefGoogle Scholar
  75. Koch, U.T., 1977, A miniature movement detector applied to recording of wing beat in Locusta. Fortschr. Zool., 24:327–332.Google Scholar
  76. Koch, U.T., 1980, Analysis of cricket stridulation using miniature angle detectors. J. Comp. Physiol., 136:247–256.CrossRefGoogle Scholar
  77. Kramer, E., 1976, The orientation of walking honeybees in odour fields with small concentration gradients. Physiol. Entomol., 1:27–37.CrossRefGoogle Scholar
  78. Kupfermann, I., and Weiss, K.R., 1978, The command neuron concept. The Behav. and Brain Sci., 1:3–39.CrossRefGoogle Scholar
  79. Kutsch, W., 1969, Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z. vergl. Physiol., 63:335–378.Google Scholar
  80. Kutsch, W., and Otto, D., 1972, Evidence for spontaneous song production independent of head ganglia in Gryllus campestris. J. Comp. Physiol., 81:115–119.CrossRefGoogle Scholar
  81. Liebeskind, J.C., and Dismukes, R.K., eds., 1978, “Peptides and Behavior: A Critical Analysis of Research Strategies” Vol.16, Neurosci. Res. Prog. Vol.16, MIT Press, Cambridge.Google Scholar
  82. Loher, W., and Huber, F., 1966, Nervous and endocrine control of sexual behaviour in a grasshopper (Gomphocerus rufus L., Acridinae). Symp. Soc. ex. Biol., 20:381–400.Google Scholar
  83. Miller, J.P., and Selverston, A.I., 1979, Rapid killing of single neurons by irradiation of intracellularly injected dye. Science, 206:702–704.PubMedCrossRefGoogle Scholar
  84. Möhl, B., and Bacon, J., 1982, The TCG wind-sensitive interneurone in the Locust II: Directional sensitivity and role in flight stabilization. J. Comp. Physiol., (submitted).Google Scholar
  85. Moiseff, A., Pollack, G.S., and Hoy, R.R., 1978, Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance. Proc. Natl. Acad. Sci., 75:4052–4056.PubMedCrossRefGoogle Scholar
  86. O’Shea, M., and Adams, M.E., 1981, Pentapeptide (Proctolin: Arg-Tyr-Leu-Pro-Thr) associated with an identified neuron. Science, 213:567–569.PubMedCrossRefGoogle Scholar
  87. O’Shea, M., Adams, M.E., and Bishop, C.A., 1981, Identification of proctolin-containing neurons: A combination of immunohistochemistry, PHLC, intracellular dye marking and electrophysiology. Fed. Proc, (in press).Google Scholar
  88. O’Shea, M., and Bishop, C.A., 1982, Neuropeptide proctolin associated with an identified skeletal motoneuron. J. Neurosci., (in press).Google Scholar
  89. Otto, D., 1967, Untersuchungen zur nervösen Kontrolle des Grillengesangs. Verh. Dtsch. Zool. Ges. Zool. Anz. Suppl., 31:585–592.Google Scholar
  90. Otto, D., 1969, Hirnreizinduzierte komplexe Verhaltensfolgen bei Grillen. Verh. Dtsch. Zool. Ges. Zool. Anz. Suppl., 33:472–477.Google Scholar
  91. Otto, D., 1971, Untersuchungen zur zentral nervösen Kontrolle der Lauterzeugung von Grillen. Z. vergl. Physiol., 74:227–271.CrossRefGoogle Scholar
  92. Otto, D., 1978, Änderungen von Gesangsparametern bei der Grille nach Injektion von Pharmaka ins Gehirn. Verh. Dtseh. Zool. Ges., 1978:245, Fischer-Verlag, Stuttgart.Google Scholar
  93. Otto, D., and Campan, R., 1978, Descending interneurons from the cricket subesophageal ganglion. Naturwissenschaften, 65:491.CrossRefGoogle Scholar
  94. Otto, D., and Weber, T., 1982, Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms. J. Comp. Physiol., (in press).Google Scholar
  95. Pollack, G.S., and Hoy, R.R., 1979, Temporal patterns as a cue for species-specific calling song recognition in crickets. Science, 204:429–432.PubMedCrossRefGoogle Scholar
  96. Pollack, G.S., and Hoy, R.R., 1981, Phonotaxis in flying crickets: Neural correlates. J. Insect Physiol., 27:41–45.CrossRefGoogle Scholar
  97. Popov, A.V., and Shuvalev, V.F., 1977, Phonotactic behavior of crickets. J. Comp. Physiol., 119:111–126.CrossRefGoogle Scholar
  98. Popov, A.V., Shuvalov, V.F., Svetlogorskaya, I.D., and Markovich, A.M., 1974, Acoustic behavior and the auditory system in insects, in “Mechanoreception”, J. Schwartzkopff, ed., Abh. Rhein. Westf. Akad. Wiss. Symposium, 53:281-306.Google Scholar
  99. Popov, A.V., Markovich, A.M., and Andjan, A.S., 1978, Auditory neurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus (DeGeer) I: The large segmental auditory neuron (LSAN). J. Comp. Physiol., 126:183–192.CrossRefGoogle Scholar
  100. Regen, J., 1913, Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens: Ein Beitrag zur Frage der Orientierung bei Insekten. Pflügers Arch. ges. Physiol. Menschen Tiere, 155:193–200.CrossRefGoogle Scholar
  101. Rehbein, H.G., 1976, Auditory neurons in the ventral cord of the locust: Morphological and functional properties. J. Comp. Physiol., 110:233–250.CrossRefGoogle Scholar
  102. Rence, B., and Loher, W., 1977, Contact chemoreceptive sex recognition in the male cricket, Teleogryllus commodus. Physiol. Entomol., 2:225–236.CrossRefGoogle Scholar
  103. Rheinlaender, J., Kalmring, K., Popov, A.V., and Rehbein, H.G., 1976, Brain projections and information processing of biologically significant sounds by two large ventral cord neurons of Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae). J. Comp. Physiol., 110:251–269.CrossRefGoogle Scholar
  104. Rowell, C.H.F., 1963, A method for chronically implanting stimulating electrodes into the brains of locusts, and some results of stimulation. J. exp. Biol., 40:271–284.Google Scholar
  105. Rowell, C.H.F., 1976, Small system neurophysiology and the study of plasticity, in “Neural Mechanisms of Learning and Memory”, R. Rosenzweig and M.D. Bennett, eds., MIT-Press, Cambridge, Mass.Google Scholar
  106. Rowell, C.H.F., O’Shea, M., and Williams, J.L.D., 1977, The neuronal basis of a sensory analyzer, the acridid movement detector system. J. exp. Biol., 68:157–186.Google Scholar
  107. Selverston, A.I., 1980, Are central pattern generators understandable? The Behav. and Brain Sci., 3:535–571.CrossRefGoogle Scholar
  108. Simmons, P., 1980, A locust wind and ocellar brain neurone. J. exp. Biol., 85:281–294.Google Scholar
  109. Simmons, P., 1980, Connexions between a movement-detecting visual interneurone and flight motoneurones of a locust. J. exp. Biol., 86:87–97.Google Scholar
  110. Stout, J.F., and Huber, F., 1972, Responses of central auditory neurons of female crickets (Gryllus campestris L.) to the calling song of the male. Z. vergl. Physiol., 76:302–313.CrossRefGoogle Scholar
  111. Stout, J.F., and Huber, F., 1981, Responses to features of the calling song by ascending auditory interneurones in the cricket Gryllus campestris. Physiol. Entomol., 6:199–212.CrossRefGoogle Scholar
  112. Thorson, J., Weber, T., and Huber, F., 1981, Auditory behavior of the cricket II: Simplicity of calling-song recognition in Gryllus and anomalous phonotaxis at abnormal carrier frequencies. J. Comp. Physiol., (in press).Google Scholar
  113. Truman, J.W., 1973, How moths ‘turn on’: A study of the action of hormones on the nervous system. Amer. Scientist, 61:700–706.Google Scholar
  114. Truman, J.W., 1976, Hormonal release of differentiated behavior patterns, in “Simpler Networks and Behavior”, J.C. Fentress, ed., Sinauer Ass. Inc., Sunderland, Mass.Google Scholar
  115. Truman, J.W., 1978, Hormonal release of stereotyped motor programmes from the isolated nervous system of the cecropia silkmoth. J. exp. Physiol., 74:151–173.Google Scholar
  116. Wadepuhl, M., 1982, Elicitation of acoustic behaviour of the grasshopper Gomphocerus rufus L. by the brain. Z. Tierpsychol., (in press).Google Scholar
  117. Wadepuhl, M., and Huber, F., 1979, Elicitation of singing and courtship movements by electrical stimulation of the brain of the grasshopper. Naturwissenschaften, 66:320.CrossRefGoogle Scholar
  118. Walters, E.T., Carew, T.J., and Kandel, E.R., 1979, Classical conditioning in Aplysia californica. Proc. Natl. Acad. Sci. USA, 76:6675–6679.PubMedCrossRefGoogle Scholar
  119. Walters, E.T., Carew, T.J., and Kandel, E.R., 1981, Associative learning in Aplysia: Evidence for conditioned fear in an invertebrate. Science, 211:504–506.PubMedCrossRefGoogle Scholar
  120. Weber, T., Thorson, J., and Huber, F., 1981, Auditory behavior of the cricket I: Dynamics of compensated walking and discrimination paradigms on the Kramer Treadmill. J. Comp. Physiol., 141:215–232.CrossRefGoogle Scholar
  121. Wendler, G., 1978, Lokomotion: Das Ergebnis zentral-peripherer Interaktion. Verh. Dtsch. Zool. Ges., 1978:80-96, Fischer-Verlag, Stuttgart.Google Scholar
  122. Wendler, G., Dambach, M., Schmitz, B., and Scharstein, H., 1980, Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.). Naturwissenschaften, 67:99.CrossRefGoogle Scholar
  123. Wiese, K., 1981, Influence of vibration on cricket hearing: Interaction of low frequency vibration and acoustic stimuli in the Omega neuron. J. Comp. Physiol., 143:135–142.CrossRefGoogle Scholar
  124. Wilson, D.M., 1961, The central nervous control of flight in a locust. J. exp. Biol., 38:471–490.Google Scholar
  125. Wilson, D.M., 1964, The origin of the flight motor command, in “Neural Theory and Modeling”, R.F. Reiss, ed., Stanford Univ. Press, Stanford, Ca.Google Scholar
  126. Wilson, J.A., 1979, The structure and function of serially homologous leg motor neurons in the locust I: Anatomy. J. Neurobiol., 10:41–65.PubMedCrossRefGoogle Scholar
  127. Wilson, J.A., 1979, The structure and function of serially homologous leg motor neurons in the locust II: Physiology. J. Neurobiol., 10:153–167.PubMedCrossRefGoogle Scholar
  128. Wilson, J.A., and Hoyle, G., 1978, Serially homologous neurones as concomitants of functional specialization. Nature, 274:377–379.PubMedCrossRefGoogle Scholar
  129. Wilson, J.A., Philipps, Ch.E., Adams, M.E., and Huber, F., 1982, Structural comparison of an homologous neuron in gryllid and acridid insects. J. Neurobiol., (in press).Google Scholar
  130. Wohlers, D.W., 1980, “Anatomical and Physiological Studies of the Auditory Pathway in Crickets”, Ph.D. Thesis, University of Munich.Google Scholar
  131. Wohlers, D.W., and Huber, F., 1978, Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus DeGeer). J. Comp. Physiol., 127:11–28.CrossRefGoogle Scholar
  132. Wohlers, D.W., and Huber, F., 1982, Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J. Comp. Physiol., (in press).Google Scholar
  133. Wohlers, D.W., Williams, J.L.D., Huber, F., and Moore, T.E., 1979, Central projections of fibers in the auditory and tensor nerves of cicadas (Homoptera: Cicadidae). Cell Tissue Res., 203:35–51.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Franz Huber
    • 1
  1. 1.Max Planck Institut für VerhaltensphysiologieSeewiesenF.R. of Germany

Personalised recommendations