Advertisement

Neural Correlates of Motivated Behavior in Fish

  • J. P. C. de Bruin
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)

Abstract

The studies on which the bulk of the results discussed in this paper are based were carried out in the Netherlands Central Institute for Brain Research. The history of this Institute is marked by research on comparative neuroanatomy in which the fish brain played an important role. This is examplified by the thesis and subsequent studies of its first director, C.U. Ariens Kappers (1904) dealing with the centers and tracts of the teleostean and selachian brain, and by R. Nieuwenhuys’ thesis (1960) on the actinopterygian telencephalon. The latter’s studies especially were of great importance for our neuroethological studies on the behavioral functions of the forebrain in teleost fish (e.g., Nieuwenhuys, 1959). The term “etho-anatomy” was introduced by Segaar (1962) in connection with effects of frontal brain lesions on innate behavior in the three-spined stickleback.

Keywords

Olfactory Bulb Reproductive Cycle Parental Activity Gonadal Hormone Nest Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariens Kappers, C.U., 1904, De banen en centra in de hersenen der Teleostiers en Selachiers, Ph.D. Thesis, University of Amsterdam.Google Scholar
  2. Aronson, L.R., 1970, Functional evolution of the forebrain in lower vertebrates, in “Development and Evolution of Behavior”, L.R. Aronson, E. Tobach, D.S. Lehrman and J.S. Rosenblatt, eds., Freeman and Comp., San Francisco.Google Scholar
  3. Assem, J. van den, 1967, Territory in the three-spined stickleback (Gasterosteus aculeatus): An experimental study in intra-specific competition. Behaviour, Suppl., 16:1–164.Google Scholar
  4. Baggerman, B., 1968, Hormonal control of reproductive and parental behaviour in fishes, in “Perspectives in Endocrinology”, E.J.W. Barrington and C.B. Jørgensen, eds., Academic Press, London, New York.Google Scholar
  5. Bass, A.H., 1981, Telencephalic efferents in the channel catfish Ictalurus punctatus: Projections to the olfactory bulb and optic tectum. Brain, Behav. Evol., 19:1–16.CrossRefGoogle Scholar
  6. Bruin, J.P.C. de, 1977, Telencephalic functions in the behaviour of the Siamese fighting fish, Betta splendens Regan (Pisces, Anabantidae), Ph.D. Thesis, University of Amsterdam.Google Scholar
  7. Bruin, J.P.C.de, 1980, Telencephalon and behavior in Teleost fish: A neuroethological approach, in “Comparative Neurology of the Telencephalon”, S.O.E. Ebbesson, ed., Plenum Press, New York, London.Google Scholar
  8. Demski, L.S., 1973, Feeding and aggressive behavior evoked by hypothalamic stimulation in a cichlid fish. Comp. Biochem. Physiol., 44A: 685–692.CrossRefGoogle Scholar
  9. Demski, L.S., and Knigge, K.M., 1971, The telencephalon and hypothalamus of the bluegill (Lepomis macrochirus): Evoked feeding, aggressive and reproductive behavior with representative frontal sections. J. Comp. Neurol., 143:1–16.PubMedCrossRefGoogle Scholar
  10. Døving, K.B., 1980, Behavior patterns in cod released by electrical stimulation of olfactory tract bundlets. Science, 207: 559–560.PubMedCrossRefGoogle Scholar
  11. Ebbesson, S.O.E., ed., 1980, “Comparative Neurology of the Telencephalon”, Plenum Press, New York, London.Google Scholar
  12. Echteler, S.M., and Saidel, W.M., 1981, Forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science, 212: 683–685.PubMedCrossRefGoogle Scholar
  13. Fiedler, K., 1964, Versuche zur Neuroethologie von Lippfischen und Sonnenbarschen. Verh. Deutsch. Zool. Ges., Kiel, 28: 569–580.Google Scholar
  14. Fiedler, K., 1966, Degenerationen und Verhaltenseffekte nach Elektrokoagulationen im Gehirn von Fischen (Diplodus, Crenilabus — Perciformes). Verh. Deutsch. Zool. Ges., Göttingen, 30: 351–366.Google Scholar
  15. Fiedler, K., 1967, Verhaltenswirksame Strukturen im Fischgehirn. Verh. Deutsch. Zool. Ges., Heidelberg, 31:602–616.Google Scholar
  16. Fiedler, K., 1974, Hormonale Kontrolle des Verhaltens bei Fischen. Fortschr. Zool., 22: 268–309.PubMedGoogle Scholar
  17. Fiedler, K. and Blüm, V., 1972, Prolactin-sensitive neurons in the forebrain of some fishes. Experientia, 28: 1384–1385.PubMedCrossRefGoogle Scholar
  18. Finger, T.E., 1981, Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science, 210: 671–673.CrossRefGoogle Scholar
  19. Forselius, S., 1957, Studies of Anabantid fishes. Zool. bidrag Uppsala, 32: 97–302.Google Scholar
  20. Iersel, J.J.A.van, 1953, An analysis of the parental behaviour of the male three-spined stickleback (Gasterosteus aculeatus). Behaviour, Suppl., 3: 1–159.Google Scholar
  21. Ito, H., and Kishida, R., 1977, Tectal afferent neurons identified by the retrograde HRP method in the carp telencephalon. Brain Res., 130: 142–145.PubMedCrossRefGoogle Scholar
  22. Ito, H., Morita, Y., Sakomoto, N., and Ueda, S., 1980, Possibility of telencephalic visual projection in teleosts (Holocentridae). Brain Res., 197:219–222.PubMedCrossRefGoogle Scholar
  23. Johns, L.S., and Liley, N.R., 1970, The effects of gonadectomy and testosterone treatment on the reproductive behavior of the male blue gourami Trichogaster trichopterus. Canad. J. Zool., 48:977–987.CrossRefGoogle Scholar
  24. Kamrin, R.P., and Aronson, L.R., 1954, The effects of forebrain lesions on mating behavior in the male platyfish Xiphophorus maculatus. Zoologica, 39:133–140.Google Scholar
  25. Liley, N.R., 1969, Hormones and reproductive behavior in fishes, in “Fish Physiology” Vol.III, W.S. Hoar and D.J. Randell, eds., Academic Press, New York.Google Scholar
  26. McKeown, B.A., and Peter, R.E., 1976, The effects of photoperiod and temperature on the release of prolactin from the pituitary gland of the goldfish. Canad. J. Zool., 54:1960–1984.CrossRefGoogle Scholar
  27. Morita, Y., Ito, H., and Masai, H., 1980, Central gustatory paths in the crucian carp Carassius carassius. J. Comp. Neurol., 191: 119–132.PubMedCrossRefGoogle Scholar
  28. Nieuwenhuys, R., 1959, The structure of the telencephalon of the teleost Gasterosteus aculeatus. Proc. Kon. Nederl. Akad. Wet. (Ser.C) 62:341–362.Google Scholar
  29. Nieuwenhuys, R., 1960, Het telencephalon der Actinopterygii, Ph.D. Thesis, University of Amsterdam.Google Scholar
  30. Nieuwenhuys, R., 1963, The comparative anatomy of the actinopterygian forebrain. J. Hirnforsch., 6:171–192.Google Scholar
  31. Nieuwenhuys, R., 1964, Further studies on the general structure of the actinopterygian forebrain. Acta Morph. Neerl.-Scand., 6:65–79.Google Scholar
  32. Nieuwenhuys, R., 1967, Comparative anatomy of the cerebellum. Prog. Brain Res., 25: 1–93.PubMedCrossRefGoogle Scholar
  33. Northcutt, R.G., 1981, Evolution of the telencephalon in nonmammals. Ann. Rev. Neurosci., 4: 301–350.PubMedCrossRefGoogle Scholar
  34. Northcutt, R.G., and Braford Jr., M.R., 1980, New observations on the organization and evolution of the telencephalon of actinopterygian fishes, in “Comparative Neurology of the Telencephalon”, S.O.E. Ebbeson, ed., Plenum Press, New York, London.Google Scholar
  35. Peter, R.E., and McKeown, B.A., 1975, Hypothalamic control of prolactin and thyrotropin secretion in teleosts with special reference to recent studies on the goldfish. Gen. Comp. Endocrinol., 25: 153–165.PubMedCrossRefGoogle Scholar
  36. Pflugfelder, O., 1954, Wirkungen partieller Zerstörungen der Parietalregion von Lebistes reticulatus. Roux’ Arch., 147:42–60.CrossRefGoogle Scholar
  37. Schroeder, D.M., 1980, The telencephalon of teleosts, in “Comparative Neurology of the Telencephalon”, S.O.E. Ebbesson, ed., Plenum Press, New York, London.Google Scholar
  38. Schütz, E., 1980, Die Wirkung von Untergrund und Nestmaterial auf das Nestbauverhalten des dreistachlichen Stichlings (Gasterosteus aculeatus). Behaviour, 72:242–317.CrossRefGoogle Scholar
  39. Segaar, J., 1961, Telencephalon and behaviour in Gasterosteus aculeatus. Behaviour, 18:256–287.CrossRefGoogle Scholar
  40. Segaar, J., 1962, Die Funktion des Vorderhirns in Bezug auf das angeborene Verhalten des dreidornigen Stichlingsmännchen (Gasterosteus aculeatus L.) — zugleich ein Beitrag über Neuronenregeneration im Fischgehirn. Acta Morph. Neerl. Scand., 5:49–64.Google Scholar
  41. Segaar, J., 1965, Behavioural aspects of degeneration and regeneration in fish brain: A comparison with higher vertebrates. Prog. Brain Res., 14:143–231.PubMedCrossRefGoogle Scholar
  42. Segaar, J., de Bruin, J.P.C., Van der Meche, A.P., and Van der Meche-Jacobi, M., 1982, Influence of chemical receptivity on reproductive behaviour of the male three-spined stickleback (Gasterosteus aculeatus L.): An ethological analysis of cranial nerve functions regardig nest fannig activity and the zig-zag dance, (in prep.).Google Scholar
  43. Sevenster, P., 1961, A causal analysis of a displacement activity (fanning in Gasterosteus aculeatus L.). Behaviour, Suppl., 9:1–170.Google Scholar
  44. Simpson, M.J.A., 1968, The display of the Siamese fighting fish, Betta splendens. Anim. Behav. Mon., 1:1–73.Google Scholar
  45. Smith, R.J.F., and Hoar, W.S., 1967, The effects of prolactin and testosterone on the parental behaviour of the male stickleback Gasteosteus aculeatus. Anim. Behav., 15:342–352.PubMedCrossRefGoogle Scholar
  46. Ten Cate, J., 1935, Physiologie des Zentralnervensystems der Fische. Erg. Biol., 11:335–409.CrossRefGoogle Scholar
  47. Weiss, C.S., and Coughlin, J.P., 1979, Maintained aggressive behavior in gonadectomized male Siamese fighting fish (Betta splendens). Physiol. Behav., 23:173–177.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. P. C. de Bruin
    • 1
  1. 1.Netherlands Institute for Brain ResearchAmsterdamThe Netherlands

Personalised recommendations