Advertisement

Implications for Neuroethology from Comparative Neurophysiology

  • Theodore H. Bullock
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)

Abstract

Neuroethology is a new science. Most of those here witnessed its emergence. Of course, it has its roots. As with any science, the currently fashionable concepts, the bad words, the differing views about fruitful approaches are the products of its history. We do well, therefore, to consider the background and to ask how adequate is our present understanding of the confluence of traditions that led to the new term, neuroethology.

Keywords

Neural Basis Cochlear Nucleus Electric Organ Discharge Comparative Physiology Dorsal Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altes, R.A., and Bullock. T.H., 1982, Brain size difference in bats and dolphins: An hypothesis, (in preparation).Google Scholar
  2. Autrum, H., 1936/1940, Über Lautäußerungen und Schallwahrnehmung bei Arthropoden I/II. Z. vergl. Physiol. 23:332–373 (I) / 28:326-352 (II).Google Scholar
  3. Autrum, H., 1943, Über kleinste Reize bei Sinnesorganen. Biol. Zbl., 63:209–236.Google Scholar
  4. Bartlett, F.C., 1959, Karl Spencer Lashley: 1890–1958, in “Biographical Memoirs of Fellows of the Royal Society” Vol.5, The Royal Society, London.Google Scholar
  5. Blakemore, C., and Van Sluyters, R.C., 1975, Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (London), 248:663–716.Google Scholar
  6. Brooks, C. McC., and Cranefield, P.F., 1959, “The Historical Development of Physological Thought”, Hafner Publishing Co., New York.Google Scholar
  7. Bullock. T.H., 1977, “Introduction to Nervous Systems”, W.H. Freeman Co., San Francisco.Google Scholar
  8. Bullock. T.H., 1980, A re-assessment of neural connectivity and its specification, in “Information Processing in the Nervous System”, H.M. Pinsker and W.D. Willis, eds., Raven Press, New York.Google Scholar
  9. Bullock. T.H., 1981a, Spikeless neurones: Where do we go from here? in “Neurones Without Impulses”, A. Roberts and B.M.H. Bush, eds., Cambridge Univ. Press, New York.Google Scholar
  10. Bullock, T.H., 1981b, A comparative neurologist’s view of signals and signs in the nervous system, in “Neural Communication and Control”, Adv. Physiol. Sci. Vol.30, Gy. Szekely, E. Labos and S. Damjanovich, eds., Pergamon Press, Oxford and Akademiai Kiado, Budapest.Google Scholar
  11. Bullock. T.H., 1981c, Neuroethology deserves more study of evoked responses. Neurosci., 6:1203–1215.CrossRefGoogle Scholar
  12. Bullock, T.H., 1982a, How is a sloth’s brain different? Neuroethology by comparison taxa, in “Essays in Honor of D.B. Lindsley”, E. Donchin, ed., (in preparation).Google Scholar
  13. Bullock, T.H., 1982b, Electroreception. Ann. Rev. Neurosci., 5:121–170.PubMedCrossRefGoogle Scholar
  14. Cleland, B.G., and Levick, W.R., 1974, Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J. Physiol. (London), 240:457–492.Google Scholar
  15. Corwin, J.T., 1978, The relation of inner ear structure to feeding behavior in sharks and rays, in “Scanning Electron Microscopy” Vol.II, O. Johari, ed., SEM Inc., AMF O’Hare, IL.Google Scholar
  16. Corwin, J.T., and Northcutt, R.G., 1980, Auditory centers in the elasmobranch brain: Deoxyglucose localization and evoked potential recording. Soc. Neurosci. Abstr., 6:556.Google Scholar
  17. Crosby, E., 1960, Charles Judson Herrick. J. Comp. Neurol., 115:1–8.CrossRefGoogle Scholar
  18. Ebbesson, S.O.E., 1982, Neuroanatomical implications for neuroethology, in “Advances in Vertebrate Neuroethology”, J.-P. Ewert, R.R. Capranica and D.J. Ingle, eds., Plenum Press, London, New York.Google Scholar
  19. Eibl-Eibesfeldt, I., 1979, “Ethology: The Biology of Behavior”, Holt, Rinehart and Winston, New York.Google Scholar
  20. Enger, P.S., and Bullock, T.H., 1965, Physiological basis of slothfulness in the sloth. Hvalradets Skrifter (Scientific Results of Marine Biol. Res.), 48:143–160.Google Scholar
  21. Ewert, J.-P., 1976, “Neuro-Ethologie” (English Edition, 1980, “Neuroethology: An Introduction to the Neurophysiological Fundamentals of Behavior”), Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  22. Freeman, J.A., and Nicholson, C., 1975, Experimental optimization of current source-density technique for anuran cerebellum. J. Neurophysiol., 38:369–382.PubMedGoogle Scholar
  23. Fuchs, J.L., and Moore, R.Y., 1980, Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: A study using the 2-deoxy (1-14C) glucose method. Proc. Nation. Acad. Sci. USA, 77:1204–1208.CrossRefGoogle Scholar
  24. Galambos, R., and Hillyard, S.A., eds., 1981, “Electrophysiological Approaches to Human Cognitive Processing”, Neurosci. Res. Progr. Bull. Vol.20/2, MIT-Press, Boston, Mass.Google Scholar
  25. Gray, J., 1950, The role of peripheral sense organs during the locomotion of vertebrates, in “Physiological Mechanisms in Animal Behavior”. Symp. Soc. Exp. Biol., 4:112, Cambridge University Press.Google Scholar
  26. Gray, J., and Lissmann, H., 1946, Further observations on the effect of deafferentation on the locomotor activity of amphibian limbs. J. Exp. Biol., 23:121–132.PubMedGoogle Scholar
  27. Griffin, D.R., 1982, “Animal Mind — Human Mind”. Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  28. Griffin, D.R., and Galambos, R., 1941, The sensory basis of obstacle avoidance in flying bats. J. Exp. Zool., 86:481–506.CrossRefGoogle Scholar
  29. Grinnell, H.W., 1940, Joseph Grinnell: 1877–1939. Condor, 42:3–34.Google Scholar
  30. Grüsser, O.-J., and Griisser-Cornehls, U., 1976, Neurophysiology of the anuran visual system, in “Frog Neurobiology”, R. Llinas and W. Precht, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  31. Herman, L.M., 1980, “Cetacean Behavior”, John Wiley and Sons, New York.Google Scholar
  32. Herrick, C.J., 1942, George Ellett Coghill: Biographical Memoirs. Nation. Acad. Sci. USA, 22:12.Google Scholar
  33. Herrick, C.J., 1949, “George Ellett Coghill: Naturalist and Philosopher”, Chicago University. Press, Chicago.Google Scholar
  34. Hess, W.R., 1932, “Die Methodik der lokalisierten Reizung und Ausschaltung subkortikaler Hirnabschnitte”, Thieme, Leipzig.Google Scholar
  35. Hirsch, H.V.B., and Spinelli, D.N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 168:869–871.PubMedCrossRefGoogle Scholar
  36. Holst, E. von, 1969, “Zur Verhaltensphysiologie bei Tieren und Menschen”, R. Piper, München (English translation, 1973, “The Behavioural Physiology of Animals and Man”, Methuen, London; Univ. Miami Press, Coral Gables, Florida).Google Scholar
  37. Hoyle, G., ed., 1977, “Identified Neurons and Behavior in Arthropods”, Plenum Press, New York.Google Scholar
  38. Huber, F., 1955, Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z. Tierpsychol., 12:12–48.CrossRefGoogle Scholar
  39. Huber, F., 1960, Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und der Lauterzeugung der Grillen. Z. vergl. Physiol., 43:359–391.CrossRefGoogle Scholar
  40. Jordan, H.J., 1929, “Allgemeine vergleichende Physiologie der Tiere”, Gruyter, Berlin.Google Scholar
  41. Kandel, E.R., 1976, “Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology”, W.H. Freeman, San Francisco.Google Scholar
  42. Keating, M.J., Beasley, L., Feldman, J.D., and Gaze, R.M., 1975, Binocular interaction and intertectal neuronal connections: Dependence upon developmental stage. Proc. Roy. Soc. Lond. Ser. B., 191:445–466.CrossRefGoogle Scholar
  43. Lettvin, J.Y., Maturana, H.R., McCullough, W.S., and Pitts, W.H., 1959, What the frog’s eye tells the frog’s brain. Proc. Inst. Radio. Engr., 47:1940–1951.Google Scholar
  44. Loeb, J., 1902, “Comparative Physiology of the Brain and Comparative Psychology”, G.P. Putnam’s Sons, New York.Google Scholar
  45. Lopes da Silva, F.H., 1981, Pattern recognition and automatic EEG analysis. TINS, 4:274–297.Google Scholar
  46. Lorenz, K., 1981, “The Foundations of Ethology”, Springer, New York, Berlin, Heidelberg.Google Scholar
  47. Magoun, H.W., 1958, “The Waking Brain”, Charles C. Thomas, Springfield, Illinois.CrossRefGoogle Scholar
  48. Manning, A., 1979, “An Introduction to Animal Behaviour”, 3rd edn., Springer, Berlin, Heidelberg, New York.Google Scholar
  49. Marler, P.R., and Hamilton, W.J., 1966, “Mechanisms of Animal Behavior”, J. Wiley and Sons, New York.Google Scholar
  50. Miller, A.H., 1964, Joseph Grinnell. Syst. Zool., 13:235–242.CrossRefGoogle Scholar
  51. Moore, J.K., 1980, The primate cochlear nuclei: Loss of lamination as a phylogenetic process. J. Comp. Neurol., 193:609–630.PubMedCrossRefGoogle Scholar
  52. Mukhametov, L.M., Supin, A.Y., and Polyakova, I.G., 1977, Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res., 134:581–584.PubMedCrossRefGoogle Scholar
  53. Nordenskiöld, E., 1935, “The History of Biology”, Tudor Publishing Co., New York.Google Scholar
  54. O’Leary, J.L., and Bishop, G.H., 1960, C.J. Herrick and the founding of comparative neurology. Arch. Neurol., 3:725–731.PubMedCrossRefGoogle Scholar
  55. Pantin, C.F.A., 1965, Capabilities of the coelenterate behavior machine. Amer. Zool., 5:581–589.Google Scholar
  56. Parker, G.H., 1919, “The Elementary Nervous System”,. J.B. Lippincott Co., Philadelphia.CrossRefGoogle Scholar
  57. Pringle, J.W.S., 1957, “Insect Flight”, Cambridge Univ. Press, Cambridge.Google Scholar
  58. Prosser, C.L., 1936, Rhythmic activity in isolated nerve centers, Cold Spring Harb. Symp. quant. Biol., 4:339–346.CrossRefGoogle Scholar
  59. Prosser, C.L., 1973, “Comparative Animal Physiology”, 3rd edn., Vol.2, W.B. Saunders, Philadelphia.Google Scholar
  60. Ridgway, S.H., and Flanigan, W.F., 1982, Electrophysiological observations during sleep in the bottlenosed porpoise (Tursiops truncatus). (in preparation).Google Scholar
  61. Roeder, K.D., 1967, “Nerve Cells and Insect Behavior”, Harvard Univ. Press, Cambridge, Mass.Google Scholar
  62. Romanes, G.J., 1885, “Jelly-fish, Star-fish, and Sea-urchins Being a Research on Primitive Nervous Systems”, Appleton and Co., New York.CrossRefGoogle Scholar
  63. Schürg-Pfeiffer, E., and Ewert, J.-P., 1981, Investigation of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaria. J. Comp. Physiol., 141:139–152.CrossRefGoogle Scholar
  64. Segaar, J., 1961, Telencephalon and behaviour in Gasterosteus aculeatus. Behaviour, 28:256–287.CrossRefGoogle Scholar
  65. Sharp, F.R., and Kilduff, T.S., 1981, The 2-deoxyglucose neuroanatomical mapping technique. TINS, 4:144–148.Google Scholar
  66. Sperry, R., 1950, Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol., 43:482–489.PubMedCrossRefGoogle Scholar
  67. Spokes, E.G.S., 1981, The neurochemistry of Huntington’s Chorea. TINS, 4:115–118.Google Scholar
  68. Tinbergen, N., 1951, “The Study of Instinct”, Oxford Univ. Press, London.Google Scholar
  69. Tsunoda, T., 1975, Functional differences between right and left-cerebral hemispheres detected by the key-tapping method. Brain Lang., 2:152–170.PubMedCrossRefGoogle Scholar
  70. Tsunoda, T., and Oka, M., 1976, Lateralization for emotion in the human brain and auditory cerebral dominance. Proc. Japan Acad., 52:528–531.Google Scholar
  71. Van der Loos, H., 1967, The history of the neuron, in “The Neuron”, H. Hyden, ed., Elsevier, Amsterdam.Google Scholar
  72. Weiss, P., 1941a, Does sensory control play a constructive role in the development of motor coordination? Schweizer Med. Wschr., 71:591–595.Google Scholar
  73. Weiss, P., 1941b, Autonomous versus reflexogenous activity of the central nervous system. Proc. Amer. Phil. Soc., 84:53.Google Scholar
  74. Wiersma, C.A.G., and Ikeda, U., 1964, Interneurons commanding swimmeret movements in the crayfish Procambarus clarkii (Girard). Comp. Biochem. Physiol., 12:509–525.PubMedCrossRefGoogle Scholar
  75. Wilder, M.B., Farley, G.R., and Starr, A., 1981, Endogenous late positive components of the evoked potentials in cats corresponding to P300 in humans. Science, 211:605–607.PubMedCrossRefGoogle Scholar
  76. Young, W., 1981, The interpretation of surface recorded evoked potentials. TINS, 4:277–280.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Theodore H. Bullock
    • 1
  1. 1.Neurobiology Unit, Scripps Institution of Oceanography and Department of Neurosciences, School of MedicineUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations