Advertisement

Adaptations for the Detection of Fluttering Insects by Echolocation in Horseshoe Bats

  • Hans-Ulrich Schnitzler
  • Joachim Ostwald
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)

Abstract

Comparative studies on echolocation in various species of bats reveal differences in the design of transmitters — i.e., the vocal systems producing different echolocation signals — as well as receivers — i.e., the auditory systems evaluating the echoes. Our hypothesis is that these differences reflect adaptations to the specific orientation tasks of each species.

Keywords

Auditory Cortex Inferior Colliculus Basilar Membrane Cochlear Nucleus Spiral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airapetianz, E.Sh., and Konstantinov, A.I., 1970, “Echolocation in Animals”, Nauka, Leningrad, English Translation, Israel Program of Scientific Translation, Jerusalem, 1973.Google Scholar
  2. Airapetianz, E.Sh., and Vasiliev, A.G., 1970, The characteristics of the evoked responses in the auditory system of bats to ultrasonic stimuli of different fill frequency. Sechenov. Physiol. J., 56:1721–1730 (in Russian).Google Scholar
  3. Airapetianz, E.Sh., and Vasiliev, A.G., 1971, On neurophysiological mechanism of the echolocating apparatus in bats (frequency parameters). Internat. J. Neurosci., 1:279–286.CrossRefGoogle Scholar
  4. Andreeva, N.G., and Lan, T.T., 1977, Major electrical responses of the superior olivary complex to amplitude-modulated signals. Sechenov. Physiol. J. of the USSR, 63:626–631 (in Russian).Google Scholar
  5. Andreeva, N.G., and Vasiliev, A.G., 1977, Responses of the superior olivary complex of horseshoe bats to amplitude-modulated signals. Sechenov. Physiol. J. of the USSR, 63:496–503 (in Russian).Google Scholar
  6. Blackmore, M., 1964, Order Chiroptera, in “The Handbook of British Mammals”, N.H. Southern, ed., Blackwell Scientific Publication, Oxford.Google Scholar
  7. Brosset, A., 1966, “La Biologie des Chiropteres”, Masson et Cie., Paris.Google Scholar
  8. Bruns, V., 1976a, Peripheral auditory tuning for fine frequency analysis by the cf-fm bat Rhinolophus ferrumequinum I: Mechanical specializations of the cochlea. J. Comp. Physiol., 106:77–86.CrossRefGoogle Scholar
  9. Bruns, V., 1976b, Peripheral auditory tuning for fine frequency analysis by the cf-fm bat Rhinolophus ferrumequinum II: Frequency mapping in the cochlea. J. Comp. Physiol., 106:87–97.CrossRefGoogle Scholar
  10. Bruns, V., and Schmieszek, E., 1980, Cochlear innervation in the Greater Horseshoe Bat: Demonstration of an acoustic fovea. Hear. Res., 3:27–43.PubMedCrossRefGoogle Scholar
  11. Eisentraut, M., 1950, Die Ernährung der Fledermäuse. Zool. Jahrb., 79:115–177.Google Scholar
  12. Goldman, L.J., and Henson, O.W., Jr., 1977, Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav. Ecol. Sociobiol., 2:411–419.CrossRefGoogle Scholar
  13. Griffin, D.R., and Simmons, J.A., 1974, Echolocation of insects by horseshoe bats. Nature, 250:731–732.CrossRefGoogle Scholar
  14. Griffin, D.R., Webster, F.A., and Michael, C.R., 1960, The echolocation of flying insects by bats. Anim. Behav., 8:141–154.CrossRefGoogle Scholar
  15. Konstantinov, A.I., Makarov, A.K., “ and Sokolov, B.V., 1978, Dopplerpulse sonar system in Rhinolophus ferrumequinum. Kenya National Acad, for Advancement of Arts and Science, 155-163.Google Scholar
  16. Long, G.R., and Schnitzler, H.-U., 1975, Behavioral audiograms from the bat Rhinolophus ferrumequinum. J. Comp. Physiol., 100:211–220.CrossRefGoogle Scholar
  17. Merzenich, M.M., Andersen, R.A., and Middlebrooks, J.H., 1979, Functional and topographic organization of the auditory cortex, in “Hearing Mechanisms and Speech”, O. Creutzfeldt, H. Scheich and Ch. Schreiner, eds., Springer. Exp. Brain Res., Suppl.2:61-75.Google Scholar
  18. Möller, J., Neuweiler, G., and Zöller, H., 1978, Response characteristics of inferior colliculus neurons of the awake cf-fm bat Rhinolophus ferrumequinum. J. Comp. Physiol., 125:217–225.CrossRefGoogle Scholar
  19. Neuweiler, G., 1970, Neurophysiologische Untersuchungen zum Echoortungssystem der Grossen Hufeisennase Rhinolophus ferrumequinum. Z. vergl. Physiol., 67:273–306.CrossRefGoogle Scholar
  20. Neuweiler, G., Schuller, G., and Schnitzler, H.-U., 1971, On-and off-responses in the inferior colliculus of the Greater Horseshoe Bat to pure tones. Z. vergl. Physiol., 74:57–63.CrossRefGoogle Scholar
  21. Neuweiler, G., and Vater, M., 1977, Response patterns to pure tones of cochlear nucleus units in the cf-fm bat Rhinolophus ferrumequinum., J. Comp. Physiol., 115:119–134.CrossRefGoogle Scholar
  22. Ostwald, J., 1978, Tonotopical organization of the auditory cortex in the cf-fm bat Rhinolophus ferrumequinum. Verh. Dtsch. Zool. Ges., 1978:198, Gustav Fischer Verlag, Stuttgart.Google Scholar
  23. Ostwald, J., 1980, The functional organization of the auditory cortex in the cf-fm bat Rhinolophus ferrumequinum, in “Animal Sonar Systems”, R.G. Busnel and J.F. Fish, eds., pp. 953–955, Plenum Press, New York.Google Scholar
  24. Pollak, G.D., and Bodenhamer, R.D., 1981, Specialized characteristics of single units in inferior colliculus of mustache bat: Frequency representation, tuning, and discharge patterns. J. Neurophysiol., 46:605–620.PubMedGoogle Scholar
  25. Pollak, G.D., and Schuller, G., 1981, Tonotopic organization and encoding features of single units in inferior colliculus of Horseshoe Bats: Functional implications for prey identification. J. Neurophysiol., 45:208–226.PubMedGoogle Scholar
  26. Pye, J.D., 1967, Discussion of the paper of Griffith, in “Animal Sonar Systems”, R.G. Busnel, ed., Jouy-en-Josas.Google Scholar
  27. Roeder, K.D., 1963, Echoes of ultrasonic pulses from flying moths, Biol. Bull., 124:200–210.CrossRefGoogle Scholar
  28. Schnitzler, H.-U., 1968, Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chi roptera-Rhi nolophidae) in verschiedenen Orientierungssituationen. Z. vergl. Physiol., 57:376–408.CrossRefGoogle Scholar
  29. Schnitzler, H.-U., 1970a, Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z. vergl. Physiol, 68:25–39.CrossRefGoogle Scholar
  30. Schnitzler, H.-U., 1970b, Comparison of the echolocation behavior in Rhinolophus ferrumequinum and Chilonycteris rubiginosa. Bijdr. Dierk., 40:77–80.Google Scholar
  31. Schnitzler, H.-U., 1973a, Control of Doppler shift compensation in the Greater Horseshoe Bat Rhinolophus ferrumequinum. J. Comp. Physiol., 82:79–92.CrossRefGoogle Scholar
  32. Schnitzler, H.-U., 1973b, Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen. Fortschr. Zool., 21:136–189.PubMedGoogle Scholar
  33. Schnitzler, H.-U., 1978, Die Detektion von Bewegungen durch Echoortung bei Fledermäusen. Verh. Dtsch. Zool. Ges., pp. 16–33, Gustav Fischer Verlag, Stuttgart.Google Scholar
  34. Schnitzler, H.-U., and Flieger, E., Detection of oscillating target movements by echolocating horseshoe bats, (in prep.).Google Scholar
  35. Schnitzler, H.-U., and Henson, O.W., Jr., 1980, Performance of airborne animal sonar systems I: Microchiroptera, in “Animal Sonar Systems”, R.G. Busnel and J.F. Fish, eds., pp. 109–181, Plenum Press, New York.Google Scholar
  36. Schnitzler, H.-U., Bruns, V., and Long, G., Doppler shift compensation and auditory fine tuning in the Greater Horseshoe Bat Rhinolophus ferrumequinum, (in prep.).Google Scholar
  37. Schnitzler, H.-U., Suga, N., and Simmons, J.A., 1976, Peripheral auditory tuning for fine frequency analysis by the cf-fm bat Rhinolophus ferrumequinum III: Cochlear microphonics and Nl-response. J. Comp. Physiol., 106:99–110.CrossRefGoogle Scholar
  38. Schuller, G., 1972, Echoortung bei Rhinolophus ferrumequinum mit frequenzmodulierten Lauten. J. Comp. Physiol, 77:306–331.CrossRefGoogle Scholar
  39. Schuller, G., 1979, Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the ‘cf-cf’ bat, Rhinolophus ferrumequinum. Exp. Brain Res., 34:117–132.PubMedCrossRefGoogle Scholar
  40. Schuller, G., and Pollak, G., 1979, Disproportionate frequency representation in the inferior colliculus of Doppler-compensating Greater Horseshoe Bats: Evidence for an acoustic fovea. J. Comp. Physiol., 132:47–54.CrossRefGoogle Scholar
  41. Schuller, G., Beuter, K., and Schnitzler, H.-U., 1974, Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J. Comp. Physiol., 89:275–286.CrossRefGoogle Scholar
  42. Schuller, G., Beuter, K., and Rübsamen, R., 1975, Dynamic properties of the compensation system for Doppler shifts in the bat Rhinolophus ferrumequinum. J. Comp. Physiol., 97:113–125.CrossRefGoogle Scholar
  43. Shortridge, G.C., 1934, “The Mammals of South West Africa”, Heinemann, London.Google Scholar
  44. Simmons, J.A., 1974, Response of a Doppler echolocation system in the bat Rhinolophus ferrumequinum., J. Acoust. Soc. Amer., 56:672–682.CrossRefGoogle Scholar
  45. Stebbings, R.E., 1977, Order Chiroptera-Bats, in “The Handbook of British Mammals”, Corbet and Southern, eds., Blackwell Publ., Oxford.Google Scholar
  46. Suga, N., 1965, Functional properties of auditory neurons in the cortex of echolocating bats. J. Physiol., 181:671–700.PubMedGoogle Scholar
  47. Suga, N., and Jen, P., 1976, Disproportionate tonotopic representation of processing cf-fm sonar signals in the mustache bat auditory cortex. Science, 194:542–544.PubMedCrossRefGoogle Scholar
  48. Suga, N., and O’Neill, W.E., 1979, Neural axis representation in the auditory cortex of the mustache bat. Science, 206:351–353.PubMedCrossRefGoogle Scholar
  49. Suga, N., Neuweiler, G., and Möller, J., 1976, Peripheral auditory tuning for fine frequency analysis by the cf-fm bat Rhinolophus ferrumequinum IV: Properties of peripheral auditory neurons. J. Comp. Physiol., 106:111–125.CrossRefGoogle Scholar
  50. Trappe, M., 1982, “Verhalten und Echoortung der Grossen Hufeisennase beim Insektenfang”, Ph.D. Thesis, Univ. of Tübingen.Google Scholar
  51. Trappe, M., and Schnitzler, H.-U., 1982, Doppler shift compensation in insect-catching horseshoe bats. Naturwissenschaften, (in press).Google Scholar
  52. Vasiliev, A.G., 1971, Characteristics of electric responses of the cochlear nuclei in Vespertilionidae and Rhinolophidae to ultra-sonic stimuli with different fill frequency. Neirophysiologica, 4:379–385 (in Russian).Google Scholar
  53. Vasiliev, A.G., 1975, Characteristics of unit responses of the cochlear nuclei of bats Rhinolophidae to single and paired ultrasonic stimuli. Neurophysiology, 7:195–199 (English translation).CrossRefGoogle Scholar
  54. Vasiliev, A.G., 1976, Characteristics of the responses of neurons in the superior olive of bats in response to single and paired ultrasonic stimuli. Neirofiziologiya, 8:30–38 (in Russian).Google Scholar
  55. Vasiliev, A.G., and Andreeva, N.G., 1971, Characteristics of the electric responses of medial geniculate body of Vespertilionidae and Rhinolophidae to ultrasonic stimuli with different fill frequency. Neirofiziologiya, 3:138–144 (in Russian).Google Scholar
  56. Vasiliev, A.G., and Timoshenko, T.E., 1973, Characteristics of electric responses of superior olivary complex in Vespertilionidae and Rhinolophidae bats to ultrasonic stimuli with different fill frequency. Neirofiziologiya, 5:33–39 (in Russian).Google Scholar
  57. Walker, E.P., 1968, “Mammals of the World” Vol.1, John Hopkins Press, Baltimore.Google Scholar
  58. Wallin, L., 1969, The Japanese bat fauna. Zool. Bidr. Uppsala, 37:408–413.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hans-Ulrich Schnitzler
    • 1
  • Joachim Ostwald
    • 1
  1. 1.Lehrstuhl Zoophysiologie Institut für Biologie IIIEberhard-Karls-UniversitätTübingenF.R. of Germany

Personalised recommendations