Acoustic Communication in the Guinea Fowl (Numida Meleagris)

  • H. Scheich
  • W. Bock
  • D. Bonke
  • G. Langner
  • V. Maier
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


Similar to other forms of communication acoustic signal exchange represents a special case among behaviors, relying on instant interactions of at least two neuronal systems. It is evident that this type of interaction with alternating roles of the nervous systems as signal emitters and receivers requires particular adaptations, notably mechanisms in the auditory and vocal motor systems for rapid identification and localization of signals, evaluation of meaning, switching to relevant responses and various feedbacks to distinguish own from foreign signals. Thus, acoustic communication research is a branch of neuroethology in its own rights with a great number of detail aspects of brain mechanisms which may not be grasped in other fields. Furthermore, it is hard to deny that during phylogeny acoustic communication was most successful, ultimately evolving into human speech. Among the numerous advantages of acoustic signalling, like independence from daylight, the minor influence of obstacles on sound propagation, and the large distances which can be covered, the independence of vocalizations from any ongoing motor activity — in the human the independence from the hand-eye interaction during tool making and using — may be the reason for this success. Consequently, there is an almost compulsory interest in the evolution of acoustic communication.


Call Type Acoustic Communication Guinea Fowl Call Group Vocal Repertoire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, R.J., 1973, The evocation of calls by diencephalic stimulation in the conscious chick. Brain, Behav. Evol., 7:424–466.CrossRefGoogle Scholar
  2. Anschel, S., 1977, Functional specificity of vocalizations elicited by electrical brain stimulation in the turkey (Meleagris gallopavo). Brain, Behav. Evol., 14:399–417.CrossRefGoogle Scholar
  3. Bateson, P.P.G., 1966, The characteristics and context of imprinting. Biol. Rev., 41:177–220.PubMedCrossRefGoogle Scholar
  4. Bateson, P.P.G., Horn, G., and Rose, S.P.R., 1975, Imprinting: Correlations between behaviour and incorporation of 14C uracil into chick brain. Brain Res., 84:207–210.PubMedCrossRefGoogle Scholar
  5. Benowitz, L., 1981, Functional organization of the avian telencephalon, in “Comparative Neurology of the Telencephalon”, S.O.E. Ebbesson, ed., Plenum Press, New York.Google Scholar
  6. Berger, L.R., and Lignon, J.D., 1977, Vocal communication and individual recognition in the pinon jay, Gymnorhinus cyanocephalus. Anim. Behav., 25:567–584.CrossRefGoogle Scholar
  7. Bock, W., 1981, “Vokalisationen, ausgelöst durch elektrische Stimulationen in Vorderhirn-, Zwischenhirn-und Mittelhirn-Gebieten bei Perlhühnern (Numida meleagris)”. Ph.D. Thesis, Technical University of Darmstadt.Google Scholar
  8. Bonke, B.A., Bonke, D., and Scheich, H., 1979a, Connectivity of the auditory forebrain nuclei in the Guinea fowl (Numida meleagris). Cell Tissue Res., 200:101–121.PubMedCrossRefGoogle Scholar
  9. Bonke, D., Scheich, H., and Langner, G., 1979b, Responsiveness of units in the auditory neostriatum of the Guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli I: Tonotopy and functional zones of field L. J. Comp. Physiol., 132:243–255.CrossRefGoogle Scholar
  10. Brown, J.L., 1965, Vocalization evoked from the optic lobe of a songbird. Science, 149:1002–1003.PubMedCrossRefGoogle Scholar
  11. Brown, J.L., 1971, An exploratory study of vocalization areas in the brain of the redwinged blackbird (Agelaius phoenicus). Behaviour, 39:91–127.PubMedCrossRefGoogle Scholar
  12. Ebbesson, S.O.E., 1980, The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res., 213:179–212.PubMedGoogle Scholar
  13. Fischer, G., 1966, Auditory stimuli in imprinting. J. Comp. Physiol. Psychol., 61:271–273.PubMedCrossRefGoogle Scholar
  14. Gautier, J.P., and Gautier, A., 1977, Communication in old world monkeys, in “How Animals Communicate”, T.A. Sebeok, ed., Indiana Univ. Press, Bloomington, London.Google Scholar
  15. Gottlieb, G., 1975, Development of species identification in ducklings I, II, and III. J. Comp. Physiol. Psychol., 89(5):387–399; (7):675-684; (8):899-912.PubMedCrossRefGoogle Scholar
  16. Gottlieb, G., and Vandenberg, J.G., 1968, Ontogeny of vocalization in duck and chick embryos. J. Exp. Zool., 168:307–326.PubMedCrossRefGoogle Scholar
  17. Griffin, D.R., 1971, The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim. Behav., 19:55–61.PubMedCrossRefGoogle Scholar
  18. Hess, E.H., 1973, “Imprinting”, Van Nostrand, New York.Google Scholar
  19. v. Holst, E., and v.St. Paul, U., 1960, Vom Wirkungsgefüge der Triebe, in “Zur Verhaltensphysiologie bei Tieren und Menschen”, Pieper Verlag, München.Google Scholar
  20. Horn, G., McCabe, B.J., and Bateson, P.P.G., 1979, An autoradiographic study of the chick brain after imprinting. Brain Res., 168:361–373.PubMedCrossRefGoogle Scholar
  21. Impekoven, M., 1976, Responses of laughing gull chicks (Lavas atricilla) to parental attraction calls and alarm calls, and effects of prenatal auditory experience on responsiveness to such calls. Behaviour, 56:250–278.CrossRefGoogle Scholar
  22. Jürgens, U., and Ploog, D., 1981, On the neural control of mammalian vocalizations. TINS, 4:135–137.Google Scholar
  23. Karten, H.J., 1968, The ascending auditory pathway in the pigeon (Columba livia) II: Telencephalic projections of the nucleus ovoidalis thalami. Brain Res., 11:134–153.PubMedCrossRefGoogle Scholar
  24. Karten, H.J., 1969, The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann. N.Y. Acad. Sci., 167:164–179.CrossRefGoogle Scholar
  25. Kelley, D.B., and Nottebohm, F., 1979, Projections of a telencephalic auditory nucleus — field L — in the canary. J. Comp. Neurol., 183:455–470.PubMedCrossRefGoogle Scholar
  26. Kohsaka, S., Takamatsu, K., Aoki, E., and Tsukada, Y., 1979, Metabolic mapping of chick brain after imprinting using 14C-2-deoxyglucose technique. Brain Res., 172:539–544.PubMedCrossRefGoogle Scholar
  27. Konishi, M., 1973, Development of auditory neuronal responses in avian embryos. Proc. Nat. Acad. Sci. USA, 70:1795–1798.PubMedCrossRefGoogle Scholar
  28. Konishi, M., 1978, Auditory environment and vocal development in birds, in “Perception and Experience”, R.D. Walk and H.L. Pick, eds., Plenum Press, New York.Google Scholar
  29. Konishi, M., and Nottebohm, F., 1969, Experimental studies on the ontogeny of avian vocalizations, in “Bird Vocalizations”, R.A. Hinde, ed., Cambridge University Press, Cambridge.Google Scholar
  30. Langner, G., 1981, Neuronal mechanisms for pitch analysis in the time domain. Exp. Brain Res., 44:450–454.PubMedCrossRefGoogle Scholar
  31. Langner, G., Bonke, D., and Scheich, H., 1981, Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds. Exp. Brain Res., 43:11–24.PubMedCrossRefGoogle Scholar
  32. Leppelsack, H.-J., 1974, Funktionelle Eigenschaften der Hörbahn im Feld L des neostriatum caudale des Staren (Sturnus vulgaris L., Aves). J. Comp. Physiol., 88:271–320.CrossRefGoogle Scholar
  33. Leppelsack, H.-J., and Vogt, M., 1976, Responses of auditory neurons in the forebrain of a songbird during stimulation with species-specific sounds. J. Comp. Physiol., 107:263–274.CrossRefGoogle Scholar
  34. Lessing, G., 1982, Diskrimination und Kategorisierung von Vokalen beim Beo (Gracula religiosa intermedia). Masters Thesis, Technical University Darmstadt.Google Scholar
  35. Maier, V., 1982, Acoustic communication in the Guinea fowl (Numida meleagris): Structure and use of vocalizations and the principle of message coding. Z. Tierpsychol., 59:29–83.CrossRefGoogle Scholar
  36. Maier, V., Rasa, A.O., and Scheich, H., 1982, Call system similarity in a groundliving social bird and mammal in the bush habitat. Sociobiol. Behav. Ecol., (in press).Google Scholar
  37. Manley, G.A., 1971, Some aspects of evolution of hearing in vertebrates. Nature, 230:506–509.PubMedCrossRefGoogle Scholar
  38. Marler, P., 1959, Developments in the study of animal communication, in “Darwin’s Biological Work: Some Aspects Reconsidered”, P.R. Bell, ed., Cambridge University Press, Cambridge.Google Scholar
  39. Marler, P., 1961, The logical analysis of animal communication. J. Theor. Biol., 1:295–317.PubMedCrossRefGoogle Scholar
  40. Marler, P., 1970, A comparative approach to vocal learning: Song development in white-crowned sparrows. J. Comp. Physiol. Psychol., 71 (Monograph).Google Scholar
  41. Marler, P., 1977a, The structure of animal communication sounds, in “Dahlem Workshop on Recognition of Complex Acoustic Signals”, T.H. Bullock, ed., Dahlem Konferenzen, Berlin.Google Scholar
  42. Marler, P., 1977b, The evolution of communication, in “How Animals Communicate”, T.A. Sebeok, ed., Indiana Univ. Press., Bloomington, London.Google Scholar
  43. Marten, K., and Marler, P., 1977, Sound transmission and its significance for animal vocalization I: Temperate habitats. Behav. Ecol. Sociobiol., 2:271–290.CrossRefGoogle Scholar
  44. Marten, K., Quine, D., and Marier, P., 1977, Sound transmission and its significance for animal vocalization II: Tropical forest habitats. Behav. Ecol. Sociobiol., 2:291–302.CrossRefGoogle Scholar
  45. McCabe, B.J., Horn, G., and Bateson, P.P.G., 1981, Effects of restricted lesions of the chick forebrain on the acquisition of filial preferences during imprinting. Brain Res., 205:29–37.PubMedCrossRefGoogle Scholar
  46. Morris, C.W., 1955, “Signs, Language and Behavior”, Braziller, New York.Google Scholar
  47. Mundinger, P.C., 1970, Vocal imitation and individual recognition of finch calls. Science, 168:480–482.PubMedCrossRefGoogle Scholar
  48. Nottebohm, F., 1970, Ontogeny of bird song. Science, 167:950–956.PubMedCrossRefGoogle Scholar
  49. Nottebohm, F., 1971, Neural lateralization of vocal control in a passerine bird I: Song. J. Exp. Zool., 177:229–261.PubMedCrossRefGoogle Scholar
  50. Nottebohm, F., 1972, The origins of vocal learning. The Amer. Naturalist, 106:116–140.CrossRefGoogle Scholar
  51. Nottebohm, F., Stokes, T.M., and Leonhard, C.M., 1976, Central control of song in the canary, Serinus canarius. J. Comp. Neurol., 165:457–486.PubMedCrossRefGoogle Scholar
  52. Oppenheimer, J.R., 1977, Communication in new world monkeys, in “How Animals Communicate”, T.A. Sebeok, ed., Indiana Univ. Press, Bloomington, London.Google Scholar
  53. Payne, R.S., and McVay, S., 1971, Songs of hump back whales. Science, 173:585–595.PubMedCrossRefGoogle Scholar
  54. Phillips, R.E., Youngren, O.M., and Peek, F.W., 1972, Repetetive vocalizations evoked by local electrical stimulation of avian brains I: Awake chickens (Gallus gallus). Animal Behav., 20:689–705.CrossRefGoogle Scholar
  55. Popa, G.T., and Popa, F.G., 1933, Certain functions of the midbrain in pigeons. Proc. Roy. Soc. Lond. B, 113:191–195.CrossRefGoogle Scholar
  56. Rose, M., 1914, Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. J. Physiol. Neurol. (Leipzig), 21:278–352.Google Scholar
  57. Sachs, M.B., Woolf, N.K., and Sinott, J.M., 1980, Response properties of neurons in the avian auditory system: Comparison with mammalian homologues and consideration of the neural encoding of complex Stimuli, in “Comparative Studies of Hearing in Vertebrates”, A.N. Popper and R.R. Fay, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  58. Salzen, E.A., Williamson, A.J., and Parker, D.M., 1979, The effects of forebrain lesions on innate and imprinted colour brightness and shape preferences in domestic chicks. Behav. Processes, 4:295–313.CrossRefGoogle Scholar
  59. Scheich, H., 1979, Common principles of organization in the central auditory pathway of vertebrates. Verh. Dtsch. Zool. Ges., 1979, Gustav Fischer Verlag, Stuttgart.Google Scholar
  60. Scheich, H., and Bonke, B.A., 1981, Tone-versus FM-induced patterns of excitation and suppression in the 14C-2deoxyglucose labeled auditory “cortex” of the Guinea fowl. Exp. Brain Res., 44:445–449.PubMedCrossRefGoogle Scholar
  61. Scheich, H., and Maier, V., 1981, 14C-deoxyglucose labeling of the auditory neostriatum in yound and adult Guinea fowl, in “Neuronal Mechanisms of Hearing”, J. Syka and L. Aitkin, eds., Plenum Press, New York.Google Scholar
  62. Scheich, H., Langner, G., and Koch, R., 1977, Coding of narrow-band and wide-band vocalizations in the auditory midbrain nucleus (MLD) of the Guinea fowl (Numida meleagris). J. Comp. Physiol., 117:245–265.CrossRefGoogle Scholar
  63. Scheich, H., Bonke, B.A., Bonke, D., and Langner, G., 1979, Functional organization of some auditory nuclei in the Guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tissue Res., 204:17–27.PubMedCrossRefGoogle Scholar
  64. Scheich, H., Bonke, D., and Langner, G., 1979, Tonotopy and analysis of wide-band calls in field L of the Guinea fowl, in “Hearing Mechanisms and Speech”, O. Creutzfeldt, H. Scheich and Chr. Schreiner, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  65. Scheich, H., Langner, G., and Bonke, D., 1979, Responsiveness of units in the auditory neostriatum of the Guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli II: Discrimination of iambus-like calls. J. Comp. Physiol., 132:257–276.CrossRefGoogle Scholar
  66. Schnitzler, H.-U., 1973, Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen. Fortschr. Zool., 21:136–189.PubMedGoogle Scholar
  67. Sebeok, T.A., 1962, Coding in the evolution of signalling behavior. Behav. Soc., 7:430–442.CrossRefGoogle Scholar
  68. Seller, T.J., 1981, Midbrain vocalization centres in birds. TINS, 4:301–303.Google Scholar
  69. Smith, W.J., 1977, “The Behavior of Communicating”, Harvard University Press, Cambridge, London.Google Scholar
  70. Sokoloff, L., Reivich, M., Patlak, C.S., Pettigrew, K.D., de Rosiers, M., and Kennedy, C., 1974, The 14C-deoxyglucose method for the quantitative determination of local cerebral glucose consumption. Trans. Amer. Soc. Neurochem., 5:85.Google Scholar
  71. Takasaka, T., and Smith, C.A., 1971, The structure and innervation of the pigeon’s basilar papilla. J. Ultrastructure Res., 35:20–65.CrossRefGoogle Scholar
  72. Tschanz, B., 1968, Trottellummen. Die Entstehung der persönlichen Beziehungen zwischen Jungvogel und Eltern. Z. Tierpsychol. (Beiheft), 4:1–100.Google Scholar
  73. Wiley, R.H., and Richards, D.G., 1978, Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav. Ecol. Sociobiol., 3:69–94.CrossRefGoogle Scholar
  74. Zaretzky, M.D., and Konishi, M., 1976, Tonotopic organization in the avian telencephalon. Brain Res., 111:167–171.CrossRefGoogle Scholar
  75. Zeier, H., and Karten, H.-J., 1971, The archistriatum of the pigeon: Organization of afferent and efferent connections. Brain Res., 31:313–326.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. Scheich
    • 1
  • W. Bock
    • 1
  • D. Bonke
    • 1
  • G. Langner
    • 1
  • V. Maier
    • 1
  1. 1.Institut für ZoologieTechnische Hochschule DarmstadtDarmstadtF.R. of Germany

Personalised recommendations