The Neural Basis of Perceptual Equivalence of Visual Stimuli in the Cat

  • Carlo A. Marzi
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


A major goal of neuroethology is to understand the neural basis of object recognition. The discovery of Perrett and Rolls (this volume) that neurons of monkey extrastriate cortex can detect faces represents a new step toward understanding high-level perceptual mechanisms. My own work is related to the neuropsychology tradition which is concerned with the problem of “stimulus equivalence”, i.e., how can an object be recognized as the same when it is presented to different retinal loci, changed in angular size, or rotated in space? Work in the cat has implicated a portion of extrastriate cortex (the lateral suprasylvian area) in the ability of animals to transfer visual learning between opposite hemispheres. This finding has led us to consider the relevant anatomical and physiological features of this cortical region, as the basis for formulating a hypothesis concerning mechanisms of “stimulus equivalence”. The results of our studies and the implications of our hypothesis should be of value to others who study pattern recognition by either the conventional training methods or by the neuroethological approach.


Superior Colliculus Primary Visual Cortex Perceptual Equivalence Interhemispheric Transfer Interocular Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonini, A., Berlucchi, G., Di Stefano, M., and Marzi, C.A., 1981, Differences in binocular interactions between cortical areas 17 and 18 and superior colliculus of Siamese cats. J. Comp. Neurol., 200:597–611.PubMedCrossRefGoogle Scholar
  2. Bando, T., Tsukuda, K., Yamamoto, N., Maeda, J., and Tsukahara, N., 1981, Cortical neurons in and around the Clare-Bishop area related with lens accommodation in the cat. Brain Res., 225:195–199.PubMedCrossRefGoogle Scholar
  3. Berlucchi, G., Sprague, J.M., Lepore, F., and Mascetti, G.G., 1978, Effects of lesions of areas 17, 18 and 19 on interocular transfer of pattern discriminations in split-chiasm cats. Exp. Brain Res., 31:275–297.PubMedCrossRefGoogle Scholar
  4. Berlucchi, G., Sprague, J.M., Levj, J., and Di Berardino, A., 1972, Pretectum and superior colliculus in visually guided behavior and in flux and form discrimination in the cat. J. Comp. Physiol. Psychol., 78:123–172.PubMedCrossRefGoogle Scholar
  5. Berlucchi, G., Sprague, J.M., Antonini, A., and Simoni, A., 1979, Learning and interhemispheric transfer of visual pattern discriminations following unilateral suprasylvian lesions in split-chiasm cats. Exp. Brain Res., 34:551–574.PubMedCrossRefGoogle Scholar
  6. Blake, R., and Hirsch, H.V.B., 1975, Deficits in binocular depth perception in cats after alternating monocular occlusion. Science, 190:1114–1116.PubMedCrossRefGoogle Scholar
  7. Bogartz, R.S., 1965, The criterion method: Some analyses and remarks. Psychol. Bull., 64:1–14.PubMedCrossRefGoogle Scholar
  8. Ganz, L., Hirsch, H.V.B., and Tieman, S.B., 1972, The nature of perceptual deficits in visually deprived cats. Brain Res., 44:547–568.PubMedCrossRefGoogle Scholar
  9. Gordon, B., and Gummow, L., 1975, Effects of extraocular muscle section on receptive field in cat superior colliculus. Vision Res., 15:1011–1019.PubMedCrossRefGoogle Scholar
  10. Gordon, B., and Presson, J., 1977, Effects of alternating occlusion on receptive fields in cat superior colliculus. J. Neurophysiol., 40:1406–1414.PubMedGoogle Scholar
  11. Gross, C.G., 1973, Inferotemporal cortex and vision, in “Progress in Physiological Psychology” Vol.5, E. Stellar and J.M. Sprague, eds., Academic Press, New York.Google Scholar
  12. Gross, C.G., and Mishkin, M.R., 1977, The neural basis of stimulus equivalence across retinal translation, in “Lateralization in the Nervous System”, S. Harnad et al., eds., Academic Press, New York.Google Scholar
  13. Gross, C.G., Bender, D.B., and Mishkin, M., 1977, Contribution of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. Brain Res., 131:227–239.PubMedCrossRefGoogle Scholar
  14. Grunau, M.W. von, 1979, Binocular summation and the binocularity of cat visual cortex. Vision Res., 19:813–816.CrossRefGoogle Scholar
  15. Grunau, M.W. von, 1981, Normal binocularity and abnormal direction selectivity in lateral suprasylvian visual area of cats with strabismic amblyopia. ARVO Abstr., 72.Google Scholar
  16. Grunau, M.W. von, and Singer, W., 1979, The role of binocular neurons in the cat striate cortex in combining information from the two eyes. Exp. Brain Res., 34:133–142.CrossRefGoogle Scholar
  17. Guillery, R.W., Casagrande, V.A., and Oberdorfer, M.D., 1974, Congenitally abnormal vision in Siamese cats. Nature, 252:195–199.PubMedCrossRefGoogle Scholar
  18. Hirsch, H.V.B., 1972, Visual perception in cats after environmental surgery. Exp. Brain Res., 15:405–423.PubMedCrossRefGoogle Scholar
  19. Hubel, D.H., and Wiesel, T.N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysol., 28:1041–1059.Google Scholar
  20. Hubel, D.H., and Wiesel, T.N., 1971, Aberrant visual projections in the Siamese cat. J. Physiol., 218:33–62.PubMedGoogle Scholar
  21. Kaye, M., Mitchell, D.E., and Cynader, M., 1981, Selective loss of binocular depth perception after ablation of cat visual cortex. Nature, 293:60–63.PubMedCrossRefGoogle Scholar
  22. Keller, G., and Innocenti, G.M., 1981, Callosal connections of suprasylvian visual areas in the cat. Neurosci., 6:703–712.CrossRefGoogle Scholar
  23. Kennedy, H., and Magnin, M., 1977, Saccadic influences on single neuron activity in the medial bank of the cat’s suprasylvian sulcus (Clare-Bishop area). Exp. Brain Res., 27:315–317.PubMedCrossRefGoogle Scholar
  24. Marzi, C.A., 1980, Vision in Siamese cats. TINS, 3:165–169.Google Scholar
  25. Marzi, C.A., Simoni, A., and Di Stefano, M., 1976, Lack of binocularly-driven neurones in the Siamese cat’s visual cortex does not prevent successful interocular transfer of visual form discriminations. Brain Res., 105:353–357.PubMedCrossRefGoogle Scholar
  26. Marzi, C.A., Di Stefano, M., and Simoni, A., 1979, Pathways of interocular transfer in Siamese cats, in “Structure and Function of Cerebral Commissures”, I. Steele Russell, M.W. van Hof and G. Berlucchi, eds., MacMillan Press, London.Google Scholar
  27. Marzi, C.A., Antonini, A., Di Stefano, M., and Legg, C.R., 1980, Callosum-dependent binocular interactions in the lateral suprasylvian area of Siamese cats which lack binocular neurones in areas 17 and 18. Brain Res., 197:230–235.PubMedCrossRefGoogle Scholar
  28. Miller, M., Pasik, P., and Pasik, T., 1980, Extrageniculate vision in the monkey VII: Contrast sensitivity functions. J. Neurophysiol., 43:1510–1526.PubMedGoogle Scholar
  29. Milner, P., 1974, A model for visual shape recognition. Psychol. Rev., 81:521–535.PubMedCrossRefGoogle Scholar
  30. Myers, R.E., 1955, Interocular transfer of pattern discriminations in cats following section of crossed optic fibers. J. Comp. Physiol. Psychol., 48:470–473.PubMedCrossRefGoogle Scholar
  31. Packwood, J., and Gordon, B., 1975, Stereopsis in normal domestic cat, Siamese cat, and cat raised with alternating monocular occlusion. J. Neurophysiol., 38:1485–1499.PubMedGoogle Scholar
  32. Palmer, L.A., Rosenquist, A.C., and Tusa, R.J., 1978, The retinotopic organization of the lateral suprasylvian areas in the cat. J. Comp. Neur., 177:237–256.PubMedCrossRefGoogle Scholar
  33. Payne, B., Harris-Moss, M., Berman, N., and Murphy, E.H., 1980, Interhemispheric connections of the cat’s visual cortex. ARVO Abstr., 1.Google Scholar
  34. Perenin, M.T., 1978, Visual function within the hemianopic field following early cerebral hemidecortication in man II: Pattern discrimination. Neuropsychologia, 16:697–708.PubMedCrossRefGoogle Scholar
  35. Riesen, A.H., and Mellinger, J.C., 1956, Interocular transfer or habits in cats after alternating monocular experience. J. Comp. Physiol. Psychol., 49:516–520.PubMedCrossRefGoogle Scholar
  36. Sanides, D., 1978, The retinotopic distribution of visual callosal projections in the suprasylvian visual areas compared to the classical visual areas (17, 18, 19) in the cat. Exp. Brain Res., 33:435.443.Google Scholar
  37. Seagraves, M.A., and Rosenquist, A.C., 1980, The location of callosal projection neurons in relationship to maps of the visual field in cat cortex. Soc. Neurosci. Abstr., 6:673.Google Scholar
  38. Sherman, S.M., 1971, Role of visual cortex in interocular transfer in the cat. Exp. Neurol., 30:34–45.PubMedCrossRefGoogle Scholar
  39. Smith, D.C., and Spear, P.D., 1979, Effects of superior colliculus removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat. J. Neurophysiol., 42:57–75.PubMedGoogle Scholar
  40. Sperry, R.W., Stamm, J., and Miner, N., 1956, Relearning tests for interocular transfer following division of optic chiasm and corpus callosum in cats. J. Comp. Physiol. Psychol., 49:529–533.PubMedCrossRefGoogle Scholar
  41. Sprague, J.M., Levy, J., Di Berardino, A., and Berlucchi, G., 1977, Visual cortical areas mediating form discrimination in the cat. J. Comp. Neurol., 172:441–488.PubMedCrossRefGoogle Scholar
  42. Weiskrantz, L., 1980, Varieties of residual experience. Quart. J. Exp. Psychol., 32:365–386.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Carlo A. Marzi
    • 1
    • 2
  1. 1.Istituto di FisiologiaUniversità di PisaPisaItaly
  2. 2.Istituto di Neurofisiologia del CNRPisaItaly

Personalised recommendations