Snapping in Toads: Some Aspects of Sensorimotor Interfacing and Motor Pattern Generation

  • Ananda Weerasuriya
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


Visually guided prey-capture by toads is released most readily by worm shaped stimuli moving along their longer axis. The configuration-dependent response is invariant with respect to velocity, movement direction (x-y-z coordinates) and — within limits — size of the stimulus, and contrast direction and structure of background (see J.-P. Ewert, this volume). Therefore, it is possible to characterize a stimulus with the above features as constituting sensory invariance in the stimulus-response relationship of anuran prey-capture. It seemed appropriate to begin an analysis of the neural mechanism underlying motor aspects of the prey-catching sequence by selecting a specific and characteristic component of the prey-catching sequence. It was reasoned that, if the neuronal traffic associated with this motor component was followed “upstream” it should eventually reach neuronal substrates that already had been explored from the sensory side and implicated to play a role in visually guided prey-capture. Results of such studies, together with the neurophysiological data on the relevant sensory mechanisms, would provide a description of the underlying neuronal circuitry.


Reticular Formation Motor Pattern Optic Tectum Rana Temporaria Hypoglossal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnard, J.W., 1940, The hypoglossal complex of vertebrates. J. Comp. Neurol., 72:489–524.CrossRefGoogle Scholar
  2. Bartels, W., 1971, Die Ontogenese der aminhaltigen Neuronensysteme im Gehirn von Rana temporaria. Z. Zellforsch., 116:94–118.PubMedCrossRefGoogle Scholar
  3. Bloom, F.E., 1979, Chemical integrative processes in the central nervous system, in “The Neurosciences: Fourth Study Program”, F.O. Schmidt and F.G. Worden, eds., M.I.T. Press, Cambridge, MA.Google Scholar
  4. Burghagen, H., 1979, “Der Einfluß von figuralen visuellen Mustern auf das Beutefangverhalten verschiedener Anuren “ Ph.D. Thesis, University of Kassel.Google Scholar
  5. Cajal y Ramon, S., 1909, Histologie du systeme nerveux de l’homme et des vertebres. Maloine, Paris.Google Scholar
  6. Corner, C., and Grobstein, P., 1981a, Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J. Comp. Physiol., 142:141–150.CrossRefGoogle Scholar
  7. Comer, C., and Grobstein, P., 1981b, Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. J. Comp. Physiol., 142:151–160.CrossRefGoogle Scholar
  8. Dole, J.W., Rose, B.B., and Tachiki, K.H., 1981, Western toads (Bufo boreas) learn odor of prey insects. Herpetologica, 37:63–68.Google Scholar
  9. Doty, R.W., 1976, The concept of neural centers, in “Simpler Networks and Behavior”, J.C. Fentress, ed., Sinauer Associates, Sunderland, MA.Google Scholar
  10. Doty, R.W., Richmond, W.H., and Storey, A.T., 1967, Effects of medullary lesions on coordination of deglutition. Exp. Neurol., 17:91–106.PubMedCrossRefGoogle Scholar
  11. Eikmanns, K.-H., 1955, Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Z. Tierpsychol., 12:229–253.CrossRefGoogle Scholar
  12. Ewert, J.-P., 1967, Untersuchungen über die Anteile zentral nervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Z. vgl. Physiol., 57:263–298.CrossRefGoogle Scholar
  13. Ewert, J.-P., 1980, “Neuroethology”, Springer, Berlin, New York.CrossRefGoogle Scholar
  14. Ewert, J.-P., 1983, Tectal mechanisms underlying prey-catching and avoidance behavior in toads, in “Comparative Neurology of the Optic Tectum”, H. Vanegas, ed., Plenum Press, New York (in press).Google Scholar
  15. Ewert, J.-P., and Siefert, G., 1974, Neuronal correlates of seasonal changes in contrast-detection of prey-catching behavior in toads (Bufo bufo L.). Vision Res., 14:431–432.PubMedCrossRefGoogle Scholar
  16. Ewert, J.-P., and Wietersheim, A.v., 1974, Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L.). J. Comp. Physiol., 92:131–148.CrossRefGoogle Scholar
  17. Falls, W.M., and King, J.S., 1976, The facial motor nucleus of the opossum: Cytology and axosomatic synapses. J. Comp. Neurol., 167:177–204.PubMedCrossRefGoogle Scholar
  18. Gans, C., 1961, A bullfrog and its prey. Nat. Hist., 70(2):26–37.Google Scholar
  19. Gaupp, E., 1899, “A. Ecker’s und R. Wiedersheim’s Anatomie des Frosches”, F. Vieweg & Sohn, Braunschweig.Google Scholar
  20. Gaze, R.M., 1970, “The Formation of Nerve Connections”, Academic Press, New York.Google Scholar
  21. Graham Brown, T., 1911, The intrinsic factors in the act of progression in the mammal. Proc. Royal Soc. B., 84:308–319.CrossRefGoogle Scholar
  22. Henn, V., and Cohen, B., 1975, Activity in eye muscle motoneurons and brainstem units during eye movements, in “Basic Mechanisms of Ocular Motility and Their Clinical Implications”, G. Lennerstand and P. Bach-y-Rita, eds., Pergamon Press, Oxford.Google Scholar
  23. Hinsche, G., 1935, Ein Schnappreflex nach “Nichts” bei Anuren. Zool. Anz., 111:113–122.Google Scholar
  24. Hobson, J.A., and Brazier, M.A.B., eds., 1980, “The Reticular Formation Revisited: Specifying Function for a Nonspecific System”, Raven Press, New York.Google Scholar
  25. Hobson, J.A., and Scheibel, A.B., eds., 1980, “The Brainstem Cope: Sensorimotor Integration and Behavioral State Control”, N.R.P. Vol.18, No.1, M.I.T. Press, Cambridge, MA.Google Scholar
  26. Ingle, D.J., 1973, Two visual systems in the frog. Science, 181:1053–1055.PubMedCrossRefGoogle Scholar
  27. Ingle, D.J., 1976, Spatial vision in anurans, in “The Amphibian Visual System”, K.V. Fite, ed., Academic Press, New York.Google Scholar
  28. Ishihara, M., 1906, Über den Schluckreflex nach der medianen Spaltung der medulla oblongata. Zentr. Physiol., 20:413–417.Google Scholar
  29. Kaneko, C.R.S., Evinger, C., and Fuchs, A.F., 1981, Role of cat pontine burst neurons in generation of saccadic eye movements. J. Neurophysiol., 46:387–408.PubMedGoogle Scholar
  30. Keller, E.L., 1974, Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol., 37:316–332.PubMedGoogle Scholar
  31. Kicliter, E., 1973, Flux wavelength and movement discrimination in frogs: Forebrain and midbrain contributions. Brain Behav. Evol., 8:340–365.PubMedCrossRefGoogle Scholar
  32. Kitai, S.T., Tanaka, T., Tsukahara, N., and Yu, H., 1972, The facial nucleus of the cat: Antidromic and synaptic activation and peripheral nerve representation. Exp. Brain Res., 16:161–183.PubMedCrossRefGoogle Scholar
  33. Kramer, E.B., Rath, T., and Lischka, M.F., 1979, Somatotopic organization of the hypoglossal nucleus: A HRP study in the rat. Brain Res., 170:533–537.CrossRefGoogle Scholar
  34. Kupfermann, I., and Weiss, K.R., 1978, The command neuron concept. The Behav. and Brain Sci., 1:3–39.CrossRefGoogle Scholar
  35. Lázár, G., 1969, Efferent pathways of the optic tectum in the frog. Acta Biol. Acad. Sci. Hung., 20:171–183.PubMedGoogle Scholar
  36. Matesz, C., and Székely, G., 1977, The dorsomedial nuclear group of cranial nerves in the frog. Acta Biol. Acad. Sci. Hung., 28:461–474.PubMedGoogle Scholar
  37. Nieuwenhuys, R., and Opdam, P., 1976, Structure of the brain stem, in “Frog Neurobiology”, R. Llinas and W. Precht, eds., Springer, New York.Google Scholar
  38. Northcutt, R.G., and Kicliter, E., 1980, Organization of the amphibian telencephalon, in “Comparative Neurology of the Telencephalon”, S.O.E. Ebbesson, ed., Plenum Press, New York.Google Scholar
  39. Opdam, P., Kemali, M., and Nieuwenhuys, R., 1976, Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J. Comp. Neurol., 165:307–331.PubMedCrossRefGoogle Scholar
  40. Parent, A., 1973, Distribution of monoamine-containing neurons in the brain stem of the frog, Rana temporaria. J. Morph., 139:67–78.PubMedCrossRefGoogle Scholar
  41. Porter, R., 1965, Synaptic potentials in hypoglossal motoneurones. J. Physiol. (Lond.), 180:209–244.Google Scholar
  42. Rubinson, K., 1968, Projections of the optic tectum of the frog. Brain Behav. Evol., 1:529–561.CrossRefGoogle Scholar
  43. Schmidt, R.S., 1974, Neural correlates of frog calling: Trigeminal tegmentum. J. Comp. Physiol., 92:229–254.CrossRefGoogle Scholar
  44. Schmidt, R.S., 1976, Neural correlates of frog calling: Isolated brainstem. J. Comp. Physiol., 108:99–113.CrossRefGoogle Scholar
  45. Senn, D.G., 1972, Development of tegmental and rhombencephalic structures in a frog (Rana temporaria L.). Acta Anat. (Basel), 82:525–548.CrossRefGoogle Scholar
  46. Shinn, E.A., and Dole, J.W., 1978, Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens. Herpetologica, 34:167–172.Google Scholar
  47. Shinn, E.A., and Dole, J.W., 1979, Evidence for a role for olfactory cues in the feeding response of Western Toads, Bufo boreas. Copeia, 1979(1): 163–165.CrossRefGoogle Scholar
  48. Soller, R.W., 1977, Monoaminergic inputs to frog motoneurons: An anatomical study using fluorescence histochemical and silver degeneration techniques. Brain Res., 122:445–458.PubMedCrossRefGoogle Scholar
  49. Sperry, R.W., 1944, Optic nerve regeneration with return of vision in anurans. J. Neurophysiol., 7:57–69.Google Scholar
  50. Sperry, R.W., 1945, Restoration of vision after crossing of optic nerves and after contralateral transplantation of eye. J. Neurophysiol., 8:15–28.Google Scholar
  51. Székely, G., and Lázár, G., 1976, Cellular and synaptic architecture of the optic tectum, in “Frog Neurobiology”, R. Llinas and W. Precht, eds., Springer, New York.Google Scholar
  52. Uemura-Sumi, M., Mizuno, N., Iwahori, N., Takeuchi, Y., and Matsushima, R., 1981, Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci. Lett., 22:31–35.PubMedCrossRefGoogle Scholar
  53. Weerasuriya, A., and Ewert, J.-P., 1981, Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J. Comp. Physiol., 144:429–434.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Ananda Weerasuriya
    • 1
    • 2
  1. 1.University of ColomboColomboSri Lanka
  2. 2.Arbeitsgr. Neuroethologie und BiokybernetikUniv. Landes Hessen GhKKasselF.R. of Germany

Personalised recommendations