A Telemetry System for Single Unit Recording in the Freely Moving Toad (Bufo Bufo L.)

  • Hans-Wilhelm Borchers
  • Christoph Pinkwart
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


The relationships between neuronal discharges and simultaneous motor patterns can be analyzed in the behaving animal. There are several methods, mainly designed for mammals, which allow recording of bioelectric activity in the brain of unrestrained animals (Phillips, 1973). In our investigations on the visually guided behavior of common toads (J.-P. Ewert, this volume) a micro telemetry system has been developed to record spike activity of single neurons from the visual pathway in the freely moving toad with cronically implanted electrodes. Three main problems had to be solved: (1) How can the neuronal activity be recorded during movements of the toad, since slight displacements of the electrode with respect to the neuron may cause the recorded potential to be lost? (2) How can the recorded spikes be transmitted from a behaving animal to the display and storage devices for further evaluation without disturbing the animal? (3) How can synchronous recordings be made of three events, namely (i) behavior of the toad, (ii) neuronal discharge, and (iii) the visual stimulus?


Optic Tectum Efference Copy Telemetry System Neuronal Discharge Common Toad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H., 1959, Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Naturwissenschaften, 46:435.CrossRefGoogle Scholar
  2. Borchers, H.-W., 1980, Single unit responses from the optic tectum in freely moving toads related to behavioral patterns, in “Cybernetic 1980”, H.J. Jensen, ed., R. Oldenbourg, München, Wien.Google Scholar
  3. Borchers, H.-W., 1982, Correlation between behavior patterns and single-unit responses for the optic tectum in the freely moving toad (Bufo bufo L.), in “Progress in Cybernetics and System Research”, Vol. 9, R. Trappl, G. Pask and L. Ricciardi, eds., Hemisphere Publishing Corporation, Wahington, New York, London.Google Scholar
  4. Borchers, H.-W., and Ewert, J.-P., 1978, Eye closure in toads (Bufo bufo L.) does not produce off responses in retinal on-off ganglion cells: A question of efferent commands. J. Comp. Physiol., 125:301–303.CrossRefGoogle Scholar
  5. Byzov, A.L., and Utina, I.A., 1971, Centrifugal effects on amacrine cells in the frog’s retina. Neirofiziologiya, 3(3):293–300.Google Scholar
  6. Demling, L., and Bachmann, K., eds., 1970, “Biotelemetrie”, G. Thieme, Stuttgart.Google Scholar
  7. Ewert, J.-P., 1983, Tectal mechanisms underlying prey-catching and avoidance behaviors in toads, in “Comparative Neurology of the Optic Tectum”, H. Vanegas, ed., Plenum Press, New York, (in press).Google Scholar
  8. Ewert, J.-P., and Borchers, H.-W., 1971, Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo L. Z. vergl. Physiol., 71:165–189.CrossRefGoogle Scholar
  9. Ewert, J.-P., and Borchers, H.-W., 1974, Antwort von retinalen Ganglienzellen bei frei beweglichen Kröten (Bufo bufo L.). J. Comp. Physiol., 92:117–130.CrossRefGoogle Scholar
  10. Fryer, T.B., 1970, Implantable biotelemetry systems: A Special Report. NASA SP-5094.Google Scholar
  11. Grüsser, O.-J., and Grüsser-Cornehls, U., 1976, Neurophysiology of the anuran visual system, in “Frog Neurophysiology”, R. Llinas and W. Precht, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  12. Holst, E.V., and Mittelstaedt, H., 1950, Das Reafferenzprinzip. Naturwissenschaften, 37:474–476.Google Scholar
  13. Jeutter, D.C., and Fromm, E., 1980, A modular expandable implantable temperature biotelemeter. IEEE Trans, of Biomed. Engineer., 27:5.Google Scholar
  14. Johnstone, J.R., and Mark, R.F., 1971, The efference copy neurone. J. Exp. Biol., 54:403–414.PubMedGoogle Scholar
  15. Kimmich, H.P., and Vos, J.A., eds., 1972, “Biotelemetry”, Meander, Leiden.Google Scholar
  16. Ko, W.H., 1970, Biotelemetry, in “Biomedical Engineering Systems” Vol.10, M. Clynes and J.H. Milsum, eds., Inter-University Electronics Series, McGraw-Hill, New York.Google Scholar
  17. Mackay, R.S., 1970, “Biomedical Telemetry”, Wiley and Sons Inc., New York, London, Sydney, Toronto.Google Scholar
  18. Maturana, H.R., 1958, Efferent fibres in the optic nerve of the toad (Bufo bufo L.). J. Anat., 92:21–26.PubMedGoogle Scholar
  19. McElligott, J.G., 1973, A telemetry system for the transmission of single and multiple channel data from individual neurons in the brain, in “Brain Unit Activity During Behavior”, M.J. Phillips, ed., Ch.C. Thomas, Springfield, Ill.Google Scholar
  20. Miles, F.A., and Rogers, L.J., 1972, Centrifugal control of the avian retina I–V. Brain Res., 48:65–156.PubMedCrossRefGoogle Scholar
  21. Phillips, M.I., ed., 1973, “Brain Unit Activity During Behavior”, Ch.C. Thomas, Springfield, Ill.Google Scholar
  22. Pigarev, I.N., Zenkin, G.M., and Girman, S.V., 1971, Activity of the retina detectors in unrestrained frogs. Physiol. J. of USSR, 57(10):1448–1453.Google Scholar
  23. Schipperheyn, J.J., 1973, Respiratory eye movement and perception of stationary objects in the frog. Acta Physiol. Pharmacol. Neerl., 12:157–159.Google Scholar
  24. Tasaki, K., Tsukahara, Y., and Watanabe, M., 1978, Efferent system in the retina of the frog Rana catesbeiana. Sensory Processes, 2:396–407.PubMedGoogle Scholar
  25. Wurtz, R.H., and Goldberg, M.E., 1972, Activity of superior colliculus in behaving monkey III: Cells discharging before eye movements. J. Neurophysiol., 35:575–586.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hans-Wilhelm Borchers
    • 1
  • Christoph Pinkwart
    • 1
  1. 1.Arbeitsgruppe Neuroethologie und Biokybernetik, FB 19Universität des Landes Hessen, GhKKasselF.R. of Germany

Personalised recommendations