Neural Basis of Visual Pattern Recognition in Fish

  • Russell D. Fernald
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


In most species of animals, recognition and correct interpretation of social signals is essential for reproduction and survival. The responses elicited by particular species-specific stimulus configurations have been described for many animals, but only in a handful of cases has it been possible to analyze these signals thoroughly. The African cichlid fish, Haplochromis burtoni, has proven exceptionally suited for the analysis of behavioral signals because:
  1. (a)

    a limited set of chromatic and spatial patterns on the body signal specific states of the animal;

  2. (b)

    these patterns can be turned on and off rapidly;

  3. (c)

    behavioral interactions depend crucially on correct recognition and interpretation of these signals (Leong, 1969; Heiligenberg and Kramer, 1972; Fernald 1977, 1980).



Outer Nuclear Layer Single Cone Cone Pigment Pigment Type Visual Pattern Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, E.E., and Fernald, R.D., 1981, Spectral sensitivity in Haplochromis burtoni. Soc. Neurosci. Abstr., 7:270.Google Scholar
  2. Fernald, R.D., 1977, Quantitative behavioural observations of Haplochromis burtoni under semi-natural conditions. Anim. Behav., 25:643–653.CrossRefGoogle Scholar
  3. Fernald, R.D., 1980, Response of male Haplochromis burtoni reared in isolation to models of conspecifics. Z. Tierpsychol., 54:85–93.CrossRefGoogle Scholar
  4. Fernald, R.D., 1981a, Chromatic organization of a cichlid fish retina. Vis. Res., 21:1749–1753.PubMedCrossRefGoogle Scholar
  5. Fernald, R.D., 1981b, Visual field and retinal projections in the African cichlid fish Haplochromis burtoni. Soc. Neurosci. Abstr., 8:844.Google Scholar
  6. Fernald, R.D., 1981c, Eye movements in the African cichlid fish Haplochromis burtoni. (in prep.).Google Scholar
  7. Fernald, R.D., and Hirata, N.R., 1977a, Field study of Haplochromis burtoni: Habitats and co-habitants. Env. Biol. Fish., 2(3):299–308.CrossRefGoogle Scholar
  8. Fernald, R.D., and Hirata, N.R., 1977b, Field study of Haplochromis burtoni: Quantitative behavioral observations. Anim. Behav., 25:964–975.CrossRefGoogle Scholar
  9. Fernald, R.D., and Hirata, N.R., 1979, The ontogeny of social behavior and body coloration in the African cichlid fish Haplochromis burtoni. Z. lierpsych., 50:180–187.Google Scholar
  10. Fernald, R.D., and Johns, P.R., 1980, Retinal structure and growth in the cichlid fish Haplochromis burtoni. Suppl. to Invest. Ophthal., 69.Google Scholar
  11. Fernald, R.D., and Johns, P.R., 1981, Retinal specialization in an African cichlid fish. Suppl. to Invest. Ophthal., 77.Google Scholar
  12. Fernald, R.D., and Liebman, P.A., 1980, Visual receptor pigments in the African cichlid fish Haplochromis burtoni. Vision Res., 20:857–864.PubMedCrossRefGoogle Scholar
  13. Fraley, N.B., and Fernald, R.D., 1981, Social control of developmental rate in the African cichlid fish Haplochromis burtoni. Z. Tierpsychol., (in press).Google Scholar
  14. Heiligenberg, W., and Kramer, U., 1972, Aggressiveness as a function of external stimulation. J. Comp. Physiol., 77:332–340.CrossRefGoogle Scholar
  15. Hendrickson, A., and Edwards, S.B., 1978, The use of axonal transport for autoradiographic tracing of pathways in the central nervous system, in: “Neuroanatomical Research Techniques, ” R.T. Robertson, ed., Academic Press, New York.Google Scholar
  16. Hollyfield, J.G., 1972, Histogenesis of the retina in the killifish Fundulus heteroclitus. J. Comp. Neurol., 144:373–380.PubMedCrossRefGoogle Scholar
  17. Johns, P.R., 1977, Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol., 176:343–358.PubMedCrossRefGoogle Scholar
  18. Johns, P.R., and Fernald, R.D., 1981, Genesis of rods in teleost fish retina. Nature, 293:141–142.PubMedCrossRefGoogle Scholar
  19. Leong, D., 1969, Quantitative effect or releasers on the attack readiness of the fish Haplochromis burtoni (Cichlidae, Pisces). Z. vergl. Physiol., 65:29–50.CrossRefGoogle Scholar
  20. Lyall, A.H., 1957, The growth of the trout retina. Quant. J. Micros. Sci., 98:101–110.Google Scholar
  21. Meyer, R.L., 1978, Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol., 59:99–111.PubMedCrossRefGoogle Scholar
  22. Müller, H., 1952, Bau und Wachstum der Netzhaut des Guppy Lebistes reticulatus. Zool. Jb., 63:275–324.Google Scholar
  23. Muske, L.E., and Fernald, R.D., 1981, Neural control of chromatophores used as a social signal. Soc. for Neurosci. Abstr., 7:844.Google Scholar
  24. Wagner, H.J., 1974, Development of the retina of Nannacara anomala with reference to regional variations of differentiation. Z. Morphol. Tiere, 79:113–131.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Russell D. Fernald
    • 1
  1. 1.Institute of NeuroscienceUniversity of OregonEugeneUSA

Personalised recommendations