Neural Mechanisms Underlying the Visual Analysis of Faces

  • David I. Perrett
  • Edmund T. Rolls
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


Faces provide an extremely important visual medium in the social interactions of primate species generally (Redican, 1975; Ekman and Oster, 1978). It may not be surprising, therefore, that in the primate brain neural mechanisms should exist which are specialized to process the complex visual patterns of faces. Such a view is, however, controversial (Ellis, 1975). This paper will discuss recent neurophysiological findings which bear upon this issue. A substantial number of neurons in a specific region of the temporal lobe of macaque monkey brains have been found to be particularly responsive to the sight of faces (Perrett et al., 979, 1982; Bruce et al., 1981). A second line of evidence which bears upon the issue of face specific processing comes from clinical studies of brain damaged human patients who suffer a disability in their perception and recognition of faces. This clinical literature has been reviewed elsewhere (Meadows, 1974; Hecean and Albert, 1978; Benton, 1980; Damasio et al., 1981) and will be only briefly covered here.


Receptive Field Primary Visual Cortex Galvanic Skin Response Striate Cortex Superior Temporal Sulcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggleton, J.P., Burton, M.J., and Passingham, R.E., 1980, Cortical and subcortical afferents to the amygdala in the rhesus monkey (Macaca mulatta). Brain Res., 190:347–368.PubMedCrossRefGoogle Scholar
  2. Benton, A.L., 1980, The neurophysiology of face recognition. Amer. Psychologist, 35:176–186.CrossRefGoogle Scholar
  3. Beyn, E.S., and Knyazeva, G.R., 1962: The problem of prosopagnosia. J. Neurol. Neurosurg. Psychiat., 25:154–158.PubMedCrossRefGoogle Scholar
  4. Bonin, G.v., and Bailey, P., 1947, “The Neurocortex of Macaca mulatta”, University of Illinois Press, Urbana, Illinois.Google Scholar
  5. Bornstein, B., 1963, Prospagnosia, in “Problems of Dynamic Neurology”, Z. Halpern, ed., Jerusalem Post Press, Jerusalem.Google Scholar
  6. Bornstein, B., and Kidron, D.P., 1959, Prosopagnosia. J. Neurol. Neurosurg. Psychiat., 22:124–131.PubMedCrossRefGoogle Scholar
  7. Bruce, C.J., Desimone, R., and Gross, C.G., 1981, Visual properties of neurones in a polysensory area in superior temporal sulcus of macaque. J. Neurophysiol., 46:369–384.PubMedGoogle Scholar
  8. Cole, M., and Perez-Cruet, J., 1964, Prosopagnosia. Neuropsychologia, 2:237–245.CrossRefGoogle Scholar
  9. Coss, R.G., 1968, The ethological command in art. Int. J. Contemp. Artist, 1:273–287.Google Scholar
  10. Damasio, A.R., Damasio, H., and Van Hoesen, G.W., 1981, Prosopagnosia: Anatomical basis and neurobehavioral mechanism. Neurology, (in press).Google Scholar
  11. De Renzi, E., Faglioni, R., and Spinnler, M., 1968, The performance of patients with unilateral brain damage on face recognition tasks. Cortex, 4:17–34.Google Scholar
  12. Desimone, R., and Gross, C.G., 1979, Visual areas in the temporal cortex of the macaque. Brain Res., 164:393–380.Google Scholar
  13. DeValois, R.L., and DeValois, K.K., 1980, Spatial vision. Ann. Rev. Psychol., 31:309–381.CrossRefGoogle Scholar
  14. Dow, B.M., 1976, Central mechanisms of vision: Parallel processing. Fed. Proc, 35:54–59.PubMedGoogle Scholar
  15. Ekman, P., and Oster, H., 1978, Facial expressions of emotion. Ann. Rev. Psychol., 30:527–554.CrossRefGoogle Scholar
  16. Ellis, H.D., 1975, Recognizing faces. Brit. J. Psychol., 66:409–426.PubMedCrossRefGoogle Scholar
  17. Ettlinger, G., 1956, Sensory deficits in visual agnosia. J. Neurol. Neurosurg. Psychiat., 19:297–308.PubMedCrossRefGoogle Scholar
  18. Faust, C., 1955, “Die zerebralen Herdslorungen bei Hinterhauptsverletzungen und ihre Beurteilung”, G.Thieme Verlag, Stuttgart.Google Scholar
  19. Gloning, I., Gloning, K., Hoff, H., and Tschabitscher, H., 1966, Zur Prosopagnosie. Neuropsychologia, 4:113–132.CrossRefGoogle Scholar
  20. Gloning, K., and Quatember, R., 1966, Methodischer Beitrag zur Untersuchung der Prosopagnosie. Neuropsychologia, 4:133–141.CrossRefGoogle Scholar
  21. Goren, C., Sarty, M., and Wu, P., 1975, Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56:544–549.PubMedGoogle Scholar
  22. Gross, C.G., Rocha-Miranda, C.E., and Bender, D.B., 1972, Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol., 35:96–111.PubMedGoogle Scholar
  23. Hammond, P., and Mackay, D.M., 1975, Responses of cat visual cortical cells to textured stimuli. Exp. Brain Res., 22:427–430.CrossRefGoogle Scholar
  24. Hebb, H., 1958, “A Textbook of Psychology”, Saunders, Philadelphia.Google Scholar
  25. Hecaen, H., and Albert, M.L., 1978, “Human Neuropsychology”, Academic Press, New York.Google Scholar
  26. Hecaen, H., Goldblum, M.C., Masure, M.C., and Ramier, A.M., 1974, Une nouvelle observation d’agnosie d’object. Deficit de l’association, ou de la categorisation specifique de la modalite visuelle? Neurophysiologia, 12:447–464.Google Scholar
  27. Hinde, R.A., and Rowell, T.E., 1962, Communication by postures and facial expression in the rhesus monkey (Macaca mulatta). Proc. Zool. Soc. Lond., 138:1–21.Google Scholar
  28. Hoffman, K.-P., and Stone, J., 1971, Conduction velocity of afferents to cat visual cortex: A correlation with cortical receptive field properties. Brain Res., 32:460–466.PubMedCrossRefGoogle Scholar
  29. Horel, J.A., Keating, E.G., and Misantone, L.G., 1975, Partial Kluver-Bucy syndrome produced by destroying neocortex or amygdala. Brain Res., 94:347–359.PubMedCrossRefGoogle Scholar
  30. Hubel, D.H., and Wiesel, T.N., 1959, Receptive fields of single neurones in the cat’s striate cortex. J. Physiol, London, 148:574–591.Google Scholar
  31. Hubel, D.H., and Wiesel, T.N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., London, 160:106–154.Google Scholar
  32. Hubel, D.H., and Wiesel, T.N., 1965, Receptive fields and functional architecture in two neostriate visual areas (18 and 19) of the cat. J. Neurophysiol., 28:229–289.PubMedGoogle Scholar
  33. Hubel, D.H., and Wiesel, T.N., 1968, Receptive fields and functional architecture of monkey striate cortex. J. Physiol., London, 195:215–243.Google Scholar
  34. Jacobsen, S., and Trojanowski, J.Q., 1977, Pre-frontal granular cortex of the rhesus monkey I: Intrahemispheric cortical afferents. Brain Res., 132:209–233.CrossRefGoogle Scholar
  35. John, E.R., and Schwartz, E.L., 1978, The neurophysiology of information processing and cognition. Ann. Rev. Psychol., 29:1–29.CrossRefGoogle Scholar
  36. Jones, E.G., and Powell, T.P.S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 93:793–820.PubMedCrossRefGoogle Scholar
  37. Konorski, J., 1967, “Integrative Activity of the Brain”, University of Chicago Press, Chicago, Illinois.Google Scholar
  38. Kuffler, S.W., 1953, Discharge patterns and functional organization of the mammalian retina. J. Neurophysiol, 16:37–68.PubMedGoogle Scholar
  39. Leinonen, L., and Nyman, G., 1979, Functional properties of cells in anterolateral part of area 7 associative face area of awake monkeys. Exp. Brain Res., 34:321–333.PubMedGoogle Scholar
  40. Levin, M.S., and Peters, B.H., 1976, Neurophysiological testing following head injuries: Prosopagnosia without visual field defect. Diseases of the Nervous System, 32:68–71.Google Scholar
  41. McConach, H.R., 1977, Developmental prosopagnosia: A single case report. Cortex, 12:76–82.Google Scholar
  42. Meadows, J.C., 1974, The anatomical basis of Prospagnosia. J. Neurol. Neurosurg. Psychiat., 37:489–501.PubMedCrossRefGoogle Scholar
  43. Mirsky, A.F., 1960, Studies on the effects of brain lesions on social behaviour in Macaca mulatta: Methodological and theoretical considerations. Ann. N.Y. Acad. Si., 85:758–794.Google Scholar
  44. Movshon, J.A., 1975, The velocity tuning of single units in cat striate cortex. J. Physiol., 249:445–468.PubMedGoogle Scholar
  45. Newcombe, F., 1979, The processing of visual information in prosopagnosia and acquired dyslexia: Functional versus physiological interpretations, in “Research in Psychology and Medicine”, D.J. Osbourne, M.M. Grunberg and J.R. Eiser, eds., Academic Press, London.Google Scholar
  46. Newcombe, F., and Ratcliff, G., 1975, Agnosia: A disorder of object recognition, in “Les Syndromes de Disconnection Calleuse chez l’Homme”, F. Michel and B. Schott, eds., Hopital Neurologique, Lyon.Google Scholar
  47. Pallis, C.A., 1955, Impaired identification of faces and places with agnosia for colours. J. Neurol. Neurosurg. Psychiat., 18:218–224.PubMedCrossRefGoogle Scholar
  48. Perrett, D.I., Rolls, E.T., and Caan, W., 1979, Temporal lobe cells of the monkey with visual responses selective for faces. Neurosci. Lett., S3:S358.Google Scholar
  49. Perrett, D.I., Rolls, E.T., and Caan,, W., 1982, Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res., (in press).Google Scholar
  50. Pigarev, I.N., Rizzolatti, G., and Scandolara, C., 1979, Neurones responding to visual stimuli in the frontal lobe of macaque monkeys. Neurosci. Lett., 12:207–212.PubMedCrossRefGoogle Scholar
  51. Redican, W.K., 1975, Facial expression in non human primates, in “Primate Behaviour” Vol.4, L.A. Rosenblum, ed., Academic Press, New York.Google Scholar
  52. Rocha-Miranda, C.E., Bender, D.B., Gross, C.G., and Mishkin, M., 1977, Visual activation of neurones in inferotemporal cortex depends on striate cortex and forebrain commissures. J. Neurophysiol., 38:475–491.Google Scholar
  53. Rolls, E.T., 1981, Responses of amygdaloid neurons in the primate, in “The Amygdala Revisited”, Y. Ben-Ari, ed., Elsevier, Amsterdam.Google Scholar
  54. Rolls, E.T., Judge, S.J., and Sanghera, M.K., 1977, Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res., 130:229–238.PubMedCrossRefGoogle Scholar
  55. Rolls, E.T., Sanghera, M.K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res., 164:121–135.PubMedCrossRefGoogle Scholar
  56. Rosvold, H.E., Mirsky, A.F., and Pribram, K.H., 1954, Influence of amygdalectomy on social behaviour in monkeys. J. Comp. Physiol. Psychol., 47:173–178.PubMedCrossRefGoogle Scholar
  57. Sanghera, M.K., Rolls, E.T., and Roper-Hall, A., 1979, Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol., 63:610–626.PubMedCrossRefGoogle Scholar
  58. Scaife, M., 1976, Response to eye like shapes by birds II: Importance of staring, pairedness and shape. Anim. Behav., 24:200–206.CrossRefGoogle Scholar
  59. Seltzer, B., and Pandya, D.N., 1978, Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res., 149:1–24.PubMedCrossRefGoogle Scholar
  60. Teuber, H.-L., 1978, The brain and human behaviour, in “Handbook of Sensory Physiology” Vol.8: Perception, R. Held, H.M. Leibowitz and H.-L. Teuber, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  61. Ungerleider, L.G., and Mishkin, M., 1982, Two cortical visual systems, in “Analysis of Visual Behavior”, D. Ingle, M. Goodale and R. Mansfield, eds., MIT Press, Cambridge, Mass.Google Scholar
  62. Weiskrantz, L., 1956, Behavioural changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol., 49:381–391.PubMedCrossRefGoogle Scholar
  63. Whiteley, A.M., and Warrington, E.K., 1977, Prosopagnosia: A clinical, psychological, and anatomical study of three patients. J. Neurol. Neurosurg. Psychoat., 40:394–430.Google Scholar
  64. Yin, R.K., 1969, Looking at upside down faces. J. Exp. Psychol., 81:141–145.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David I. Perrett
    • 1
  • Edmund T. Rolls
    • 1
  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations