Frog Prey Capture Behavior: Between Sensory Maps and Directed Motor Output

  • Paul Grobstein
  • Christopher Comer
  • Sandra K. Kostyk
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 56)


In frog prey capture behavior an appropriate sensory stimulus at a given location in space triggers a complex movement directed toward the stimulus. We are interested in how the frog brain is organized so as to yield such a spatial correspondence between a stimulus and the resulting movement. Initial stages of the neuronal circuitry underlying prey capture appear to involve topographic sensory representations in the midbrain. The prey capture outputs are triggered or ballistic, suggesting that they are based on pattern generating circuitry at some unknown location in the brain. Given these considerations, one approach to the problem of the spatial correspondence between stimulus and movement is to ask how topographic sensory maps are linked to pattern generating circuitry. In this paper we will discuss several experiments directed at exploring this linkage. We will focus particularly on how our ideas about the organization which brings about an appropriate correspondence between input and output have evolved during the course of these studies.


Prey Capture Optic Tectum Spatial Correspondence Rana Pipiens Bufo Bufo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Comer, C., and. Grobstein, P., 1978, Prey acquisition in atectal frogs. Brain Res., 153:217–221.PubMedCrossRefGoogle Scholar
  2. Comer, C., and Grobstein, P., 1981a, Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J. Comp. Physiol., 142:141–150.CrossRefGoogle Scholar
  3. Comer, C., and Grobstein, P., 1981b, Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. J. Comp. Physiol., 142:151–160.CrossRefGoogle Scholar
  4. Comer, C., and Grobstein, P., 1981c, Organization of sensory inputs to the midbrain of the frog, Rana pipiens. J. Comp. Physiol., 142:161–168.CrossRefGoogle Scholar
  5. Ewert, J.-P., 1967a, Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo) durch elektrische Mittelhirnreizung. Z. vergl. Physiol., 71:165–189.CrossRefGoogle Scholar
  6. Ewert, J.-P., 1967b, Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol., 295:90–98.CrossRefGoogle Scholar
  7. Ewert, J.-P., and Borchers, H.-W., 1971, Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte (Bufo bufo L.). Z. vergl. Physiol., 71:165–189.CrossRefGoogle Scholar
  8. Fite, K.V., 1969, Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol., 24:475–486.PubMedCrossRefGoogle Scholar
  9. Fite, K.V., 1973, The visual fields of the frog and toad: A comparative study. Behav. Biol., 9:707–718.PubMedCrossRefGoogle Scholar
  10. Fukson, O.I., Berkinblit, M.B., and Feldman, A.G., 1980, The spinal frog takes into account the scheme of its body during the wiping reflex. Science, 209:1261–1263.PubMedCrossRefGoogle Scholar
  11. Grobstein, P., Comer, C., and Kostyk, S., 1980, The potential binocular field and its tectal representation in Rana pipiens. J. Comp. Neurol., 190:175–185.PubMedCrossRefGoogle Scholar
  12. Gordon, B., Moran, J., and Presson, J., 1979, Visual field deficits in cats with one eye rotated. Soc. Neurosci. Abstr., 5:626.Google Scholar
  13. Grüsser, O.-J., Grüsser-Cornehls, U., 1973, Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations, in “Handbook of Sensory Physiology” Vol. VII/3A, R. Jung, ed., Springer, Berlin, Heidelberg, New York.Google Scholar
  14. Ingle, D., 1970, Visuomotor functions of the frog optic tectum. Brain Behav., Evol., 3:57–71.CrossRefGoogle Scholar
  15. Ingle, D., 1973, Two visual systems in the frog. Science, 181:1053–1055.PubMedCrossRefGoogle Scholar
  16. Ingle, D., 1982, The analysis of visuomotor organization in some vertebrates, in “Advances in Analysis of Visual Behavior”, D. Ingle, M. Goodale, and R. Mansfield, eds., M.I.T. Press, Cambridge, Mass., (in press).Google Scholar
  17. Kostyk, S.K., and Grobstein, P., 1980, Visual prey acquisition behavior in the frog: Effects of various unilateral lesions. Soc. Neurosci. Abstr., 6:75.Google Scholar
  18. Kostyk, S.K., and Grobstein, P., 1982, Visual orienting deficits in frogs with various unilateral lesions. Behav. Brain Res., (submitted).Google Scholar
  19. Krasne, F.B., and Wine, J.J., 1977, Control of crayfish escape behavior, in “Identified Neurons and Behavior of Arthropods”, G. Hoyle, ed., Plenum Press, New York.Google Scholar
  20. Peck, C.K., Barber, G., Pilsecker, C.E., and Wark, R.C., 1980, Visual field deficits in cats reared with cyclodeviations of the eyes. Exp. Brain Res., 41:61–74.PubMedCrossRefGoogle Scholar
  21. Raphan, T., and Cohen, B., 1978, Brainstem mechanisms for rapid and slow eye movements. Ann. Rev. Physiol., 40:527–552.CrossRefGoogle Scholar
  22. Scalia, F., and Fite, K., 1974, A retinotopic analysis of the central connections of the optic nerve in the frog. J. Comp. Neurol., 158:455–478.PubMedCrossRefGoogle Scholar
  23. Sperry, R.W., 1944, Optic nerve regeneration with return of vision in anurans. J. Neurophysiol., 7:57–69.Google Scholar
  24. Sperry, R.W., 1948, Orderly patterning of synaptic associations in regeneration of intracerebral fiber tracts mediating visuomotor coordination. Anat. Rec., 102:63–75.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Paul Grobstein
    • 1
  • Christopher Comer
    • 1
  • Sandra K. Kostyk
    • 1
  1. 1.Department of Pharmacological and Physiological SciencesUniversity of ChicagoChicagoUSA

Personalised recommendations