Nanosecond Pulse Breakdown of Gas Insulated Gaps

  • E. E. Kunhardt
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 89a)


Over the last few decades there has been and continues to be an interest in elucidating those processes which have a major influence on the spatial-temporal development of the space charge in a gas insulated gap, leading to the collapse of the voltage applied across it. The various processes which must be considered have been discussed by Rees and by Dutton (this ASI). The gap parameters (i.e., pressure, p; applied external fields, EQ; gap dimensions, d; and gas type) and the time scales associated with the current growth serve in narrowing down the number of processes that need to be considered for any particular situation. There has been considerable controversy as to what processes play a role in the various regions of gap parameter space. A discussion of these issues has been given by Professor Llewellyn-Jones at this ASI.


Emission Rate Formative Time Cathode Surface Incident Pulse Coaxial Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayle, M., Bayle, P., and Crokaert, M., 1975, J. Phys. D, 8:2181.CrossRefGoogle Scholar
  2. Bychkov, Y. K., Korolev, Y. D., and Gavrilyuk, P. A., 1973, Sov. Phys. Tech. Phys., 17:1337.Google Scholar
  3. Davies, A. J. Davies, C. S., and Evans, C. J., 1971, Proc. Inst. Elec. Eng., 124:179.CrossRefGoogle Scholar
  4. Dickey, F. R., Jr., 1952, J. Appl. Phys., 23:1336.CrossRefGoogle Scholar
  5. Fletcher, R. C., 1949, Phys. Rev., 76:1501.CrossRefGoogle Scholar
  6. Felsenthal, P. and Proud, J. M., 1965, Phys. Rev. A, 139:1796.Google Scholar
  7. Kline, L. E., 1974, J. Appl. Phys., 45:2046CrossRefGoogle Scholar
  8. Kunhardt, E. E. and Byszewski, W. W., 1980, Phys. Rev. A., 21:2069.CrossRefGoogle Scholar
  9. Kunhardt, E. E., 1980, IEEE Trans. Plasma Science, PS-8:130.CrossRefGoogle Scholar
  10. Kremnev, V. V. and Mesyats, G. A., 1971, Prk. Mek. i Tek. Fiz., 1:40.Google Scholar
  11. Koppitz, J., 1971, Z. Naturforsch., 26a:700.Google Scholar
  12. Koppitz, J., 1973, J. Phys. D, 6:1494.CrossRefGoogle Scholar
  13. Koppitz, J. and Stuhm, K., 1977, Appl. Phys., 12:23.CrossRefGoogle Scholar
  14. Korshunov, G. S., Rudenko, N. S., and Tsvetkov, V. I., 1970, Sov. Phys. Tech. Phys., 14:1074.Google Scholar
  15. Levinson, S. and Kunhardt, E. E., 1981, in: “Digest of Technical Papers, 3rd International Pulsed Power Conference, Albuquerque, NM,” T. Martin and A. Guenther, eds., p. 226.Google Scholar
  16. Loeb, L. B., 1939, “Fundamental Processes of Electrical Discharges in Gases,” Wiley, New York.Google Scholar
  17. Lozanskii, E.D., 1976, Sov. Phys.-USP., 18:893.CrossRefGoogle Scholar
  18. Mesyats, G. A., Byrchkov, Y. I., and Isko’kskii, A. I., 1969, Sov. Phys. Tech. Phys., 13:1051.Google Scholar
  19. Mesyats, G. A., Bychkov, Y. I., and Kremnev, V. V., 1972, Usp, Fiz. Nauk., 107:201.CrossRefGoogle Scholar
  20. Meed, J. M., 1940, Phys. Rev., 57:722.CrossRefGoogle Scholar
  21. Morgan, C. G. and Harcombe, D., 1953, Proc. Phys. Soc. B, 66:665.CrossRefGoogle Scholar
  22. Rogowski, W. 1928, Arch. Electrotech., 20:99.CrossRefGoogle Scholar
  23. Raether, H., 1964, “Electron Avalanches and Breakdown in Gases,” Butterworth, London.Google Scholar
  24. Stritzke, P., Sanders, I., and Raether, H., 1977, Sov. Phys. Tech. Phys., 10:2285.Google Scholar
  25. Vorob’ev, V. V. and Iskol’dskii, A. M., 1967, Sov. Phys. Tech. Phys., 11:1560.Google Scholar
  26. Wilson, R. R., 1936, Phys. Rev., 50:1082.CrossRefGoogle Scholar
  27. Yoshida, K., and Tagashira, H., 1976, J. Phys. D, 9:491.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • E. E. Kunhardt
    • 1
  1. 1.Ionized Gas LaboratoryTexas Tech UniversityLubbockUSA

Personalised recommendations