The Microscopic Treatment of Nonequilibrium Regions in a Weakly Ionized Gas

  • P. Segur
  • M. Yousfi
  • J. P. Boeuf
  • E. Marode
  • A. J. Davies
  • J. G. Evans
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 89a)


Macroscopic parameters, such as drift velocity, diffusion, ionization, and attachment coefficients, used to describe the development of a discharge are normally measured in a swarm-type experiment (Huxley and Crompton, 1974). To analyze these experiments, we must assume that the electrons have reached an equilibrium hydrodynamic state so that their behavior after a sufficiently long time is such that the distribution function f(r,v,t,) (r, v and t are the position and velocity vectors and the time, respectively) can be considered a function of the density n(r,t). The transport parameters are then time and position independent (Kumar et al., 1980). In a great number of cases, the equilibrium regime effectively exists, and the preceding hypothesis is perfectly valid. Nevertheless, even if sufficient time has elapsed for the swarm to reach


Boltzmann Equation Glow Discharge Drift Velocity Inelastic Collision Electron Energy Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkhazov, G. D., 1970, Sov. Phys. Tech. Phys., 15: 66.Google Scholar
  2. Allis, W. P., 1975, Rev. Phys. Appl., 10: 97.CrossRefGoogle Scholar
  3. Badareu, E. and Popescu, I., 1965, “Gaz Ionisés,” Dunod, Paris.Google Scholar
  4. Baker, C. T. H., 1977, “The Numerical Treatment of Integral Equations,” Clarendon, Oxford.Google Scholar
  5. Boardman, A. D., Fawcett, W., and Rees, H. D., 1968, Solid State Commun., 6: 305.CrossRefGoogle Scholar
  6. Boeuf, J. P., Marode, E., Segur, P., Davies, A. J., and Evans, J. G., 1980, jm “Proceedings 6th International Conference on Gas Discharges, Edinburg,” IEE Conf. Publ., 189, p. 63.Google Scholar
  7. Boeuf, J. P., 1981, Thèse de Spécialité, No 2967, Université de Paris XI, Orsay.Google Scholar
  8. Boeuf, J. P., Davies, A. J., Evans, J. G., Marode, E., and Segur, P., 1982, to be published.Google Scholar
  9. Boeuf, J. P. and Marode, E., 1982, to be published.Google Scholar
  10. Braglia, G. L., 1970, Nuovo Cimento, B, 70: B. 169.CrossRefGoogle Scholar
  11. Braglia, G. L., 1975a, Parma University Reports, IPPR-S-153.Google Scholar
  12. Braglia, G. L., 1975b, Parma University Reports, IPPR-S-162.Google Scholar
  13. Braglia, G. L., 1977, Physica, C., 92: 91.CrossRefGoogle Scholar
  14. Braglia, G. L., 1980, Beitr. Plasma. Phys., 20:(3) 147.CrossRefGoogle Scholar
  15. Carter, L. L., Cashwell, E. D., and Taylor, W. M., 1972, Nucl. Sci. Eng., 48: 403.Google Scholar
  16. Chanin, L. M. and Rork, G. D., 1964, Phys. Rev., A, 135: 1005.Google Scholar
  17. Davies, A. J., Evans, J. G., Marode, E., and Segur, P., 1980, in: “Proceedings, 6th International Conference on Gas Discharges, Edinburgh,” IEE Conf. Publ. 189, P- 59.Google Scholar
  18. Davies, A. J., 1981, in: “Proceedings, 15th International Conference on Phenomena Ionized Gases, Minsk,” Invited Papers.Google Scholar
  19. Desloge, E. A. and Mitchell, R. D., 1970, Aust. J. Phys., 23: 497.Google Scholar
  20. Englert, G. W., 1974, Z. Naturforsch., A, 29: 51.Google Scholar
  21. Fournier, G. and Pigache, D. , 1976, Bull. Am. Phys. Soc., 21: 174.Google Scholar
  22. Grosswald, E., 1961, J. Math. Mech., 10: 1.Google Scholar
  23. Huxley, L. G. H. and Crompton, R. W., 1974, “The Diffusion and Drift of Electrons in Gases,” Wiley, New York.Google Scholar
  24. Itoh, T. and Musha, T., 1960, J. Phys. Soc. Japan, 15: 1675.CrossRefGoogle Scholar
  25. Kline, L. E. and Siambis, I. G., 1972, Phys. Rev., A, 5: 794.CrossRefGoogle Scholar
  26. Kumar, K., Skullerud, H. R., and Robson, R. E., 1980, Aust. J. Phys., 33: 343.Google Scholar
  27. Labahn, R. W. and Callaway, J., 1970, Phys. Rev., 2: 366.CrossRefGoogle Scholar
  28. Lakshminarashimha, C. S., Lucas, J., and Snelson, R. A., 1975, Proc. IEE, 122: 1162.Google Scholar
  29. Lalau F., 1981, Thèse de Spécialité, No 2876, Université de Paris XI.Google Scholar
  30. Ligou, J., 1973, Nucl. Sci. Eng., 50: 135.Google Scholar
  31. Lin, S. L. and Bardsley, J. N., 1977, J. Chem. Phys.., 66: (2) 435.CrossRefGoogle Scholar
  32. Long, W. H. Jr., 1979, Technical Report, AFAPL-TR, No. 79–3038, Northrop Res. Tech. Cent.Google Scholar
  33. Lucas, J. and Saelee, H. T., 1975, J. Phys. D, 8: 640.CrossRefGoogle Scholar
  34. Marode, E., 1975, J. Appl. Phys., 46: 2005.CrossRefGoogle Scholar
  35. Marode, E., Tran Ngoc An, Fournier, G., Segur, P., and Pareathumby, S., 1979, Rapport Final Contract D.G.R.S.T. No. 77–7–1918.Google Scholar
  36. Miller, L. B., 1967, Argonne National Laboratory, ANL-7307.Google Scholar
  37. Pareathumby, S., 1979, Thèse de Spécialité, No. 2179, Toulouse.Google Scholar
  38. Parker, J. H. Jr. and Lowke, J. J., 1969, Phys. Rev., 181: 290.CrossRefGoogle Scholar
  39. Pitchford, L. C., O’Neil, S. V., and Rumble, J. R. Jr., 1981, Phys. Rev., 23: 294.CrossRefGoogle Scholar
  40. Reid, I. D. and Hunter, S. R., 1979, Austr. J. Phys., 32: 255.Google Scholar
  41. Sakai, Y., Tagashira, H., and Sakamoto, S., 1972, J. Phys. B, 5: 1010.CrossRefGoogle Scholar
  42. Sakai, Y. Tagashira, H., and Sakamoto, S., 1977, J. Phys. D, 10: 1035.CrossRefGoogle Scholar
  43. Sanchez, R., 1974, Rapport CEA No 1793.Google Scholar
  44. Segur, P. Keller, R., 1977, J. Comput. Phys., 24: 43.Google Scholar
  45. Segur, P., Pareathumby, S., Yousfi, M., and Marode, E., 1979, J. Phys., Collo. C7, 40: 599.Google Scholar
  46. Segur, P., Yousfi, M., and Marode, E., 1980, in: “Proceedings, 6th International Conference on Gas Discharges, Edinburgh,” IEE Conf. Publ. 189, p. 56.Google Scholar
  47. Skullerud, H. R., 1968, Br. J. Appl. Phys., 1: 1567.Google Scholar
  48. Sockol, P. M., 1966, Nasa TND 3510, Lewis Research Center.Google Scholar
  49. Swigert, P. and Goldstein, M., 1967, Nasa TND 4043, Lewis Research Center.Google Scholar
  50. Thomas, R. W. L. and Thomas, W. R. L., 1969, J. Phys. B, 2: 562.CrossRefGoogle Scholar
  51. Tran Ngoc An, Marode, E. and Johnson, P. C., 1977, J. Phys. D, 10: 2317.CrossRefGoogle Scholar
  52. Von Engel, A., 1965, “Ionized Gases,” Oxford.Google Scholar
  53. Ward, A. L., 1962, J. Appl. Phys., 33: 2789.CrossRefGoogle Scholar
  54. Warren, R., 1955, Phys. Rev., 98: 1650.Google Scholar
  55. Whipple, E. C. Jr. and Parker, J. L., 1971, Phys. Fluids, 14:(11) 2368.CrossRefGoogle Scholar
  56. Woodcock, E. R., Murphy, T., Hemmings, P. J., and Longworth, T. C., 1965, Argonne National Laboratory, ANL-7050.Google Scholar
  57. Yarnold, G. P., 1945, Philos. Mag., 36: 185.Google Scholar
  58. Yarnold, G. P., 1946, Philos. Mag., 38: 186.Google Scholar
  59. Yousfi, M., 1980, Thèse de Spécialité, No. 2404, Toulouse.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • P. Segur
    • 1
  • M. Yousfi
    • 1
  • J. P. Boeuf
    • 2
  • E. Marode
    • 2
  • A. J. Davies
    • 3
  • J. G. Evans
    • 3
  1. 1.Centre de Physique Atomique, Laboratoire Associé au CNRS no. 277Université Paul SabatierToulouse cedexFrance
  2. 2.Laboratorire de Physique des DéchargesEcole Supérieure d’ElectricitéGif-sur-YvetteFrance
  3. 3.Department of Physics, University College of SwanseaUniversity of WalesSwanseaUK

Personalised recommendations