A Numerical Solution of the Boltzmann Equation

  • L. C. Pitchford
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 89a)


The mathematical connection between the microscopic behavior of electrons as described by electron-neutral scattering cross sections and the macroscopic behavior of an electron swarm is through the Boltzmann equation which describes the time-evolution of the electron energy distribution function (EEDF) in phase space. The Boltzmann equation can be solved to yield the EEDF, various integrals over which yield the measurable parameters in a swarm experiment (Huxley and Crompton, 1974). Two preceeding papers describe the mathematical foundation (Skullerud, 1981) and analysis of the Legendre expansion solution of the Boltzmann equation as well as asymptotic forms of the solutions (Allis, 1981). For applications, it is almost always necessary to solve the Boltzmann equation numerically. This article describes some recent work in numerical solution techniques.


Boltzmann Equation Drift Velocity Electron Energy Distribution Function Elastic Cross Section Inelastic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allis, W. P., 1956, Handb. Phys., 21:383.Google Scholar
  2. Braglia, G. L., 1977, Physica (Utrecht), 92C:91.Google Scholar
  3. Braglia, G. L., 1981, J. Chem. Phys., 74:2990.CrossRefGoogle Scholar
  4. DeBoor, C. J., 1971, J. Approx. Theory, 6:50.CrossRefGoogle Scholar
  5. Englehardt, A. G., Phelps, A. V., and Risk, C. G., 1964, Phys. Rev. A, 135:1566.Google Scholar
  6. Ferrari, L., 1975, Physica (Utrecht), 81A:276.Google Scholar
  7. Ferrari, L., 1977, Physica (Utrecht), 85C:161.Google Scholar
  8. Frost, L. S. and Phelps, A. V., 1962, Phys. Rev., 127:1621.CrossRefGoogle Scholar
  9. Hake, R. D., Jr. and Phelps, A. V., 1967, Phys. Rev., 158:70.CrossRefGoogle Scholar
  10. Holstein, T., 1946, Phys. Rev., 70:367.CrossRefGoogle Scholar
  11. Huxley, L. E. H. and Crompton, R. W., 1974, “The Diffusion and Drift of Electrons in Gases,” Wiley, New York.Google Scholar
  12. Kitamori, K., Tagashira, H., and Sakai, Y., 1978, J. Phys. D, 11:283.CrossRefGoogle Scholar
  13. Kleban, P. and Davis, H. T., 1977, Phys. Rev. Lett., 39:456.CrossRefGoogle Scholar
  14. Kleban, P. and Davis, H. T., 1978, J. Chem. Phys., 68:2999.CrossRefGoogle Scholar
  15. Kumar, K., Skullerud, H. R., and Robson, R. E., 1980, Aust. J. Phys., 33:343.Google Scholar
  16. Levron, D. and Phelps, A. V., 1979, Bull. Am. Phys. Soc., 24:129.Google Scholar
  17. Lin, S. L., Robson, R. E., and Mason, E. A., 1979, J. Chem. Phys., 71:3483.CrossRefGoogle Scholar
  18. Long, W. H., Jr., 1979, Air Force Aero Propulsion Laboratory Report, AFAPL-TR-79–2038 (unpublished).Google Scholar
  19. Luft, P. E., 1975, JILA Information Center Report No. 14, Boulder, Co.Google Scholar
  20. Makabe, T. and Mori, T. J., 1979, J. Phys. (Paris) Colloq., 40:43.CrossRefGoogle Scholar
  21. Mcintosh, A. I., 1974, Aust. J. Phys., 27:59.CrossRefGoogle Scholar
  22. Morgan, W. L., 1979, JILA Information Center Report No. 19, Boulder, Co.Google Scholar
  23. Parker, J. H., Jr. and Lowke, J. J., 1969, Phys. Rev., 181:290.CrossRefGoogle Scholar
  24. Pitchford, L. C., O’Neil, S. V., and Rumble, J. R. , Jr., 1981, Phys. Rev. A, 23:294.CrossRefGoogle Scholar
  25. Pitchford, L. C. and Phelps, A. V., 1982a, Phys. Rev. A, 25:540.CrossRefGoogle Scholar
  26. Pitchford, L. C. and Phelps, A. V., 1982b, to be published.Google Scholar
  27. Prenter, P., 1975, “Splines and Variational Methods,” Wiley, New York.Google Scholar
  28. Reid, I. D. and Hunter, S. R., 1979, Aust. J. Phys., 32:255.Google Scholar
  29. Reid, I. D., 1979, Aust. J. Phys., 32:231.Google Scholar
  30. Rockwood, S. D. and Greene, A. E., 1980, Comp. Phys. Comm., 19:377.CrossRefGoogle Scholar
  31. Saelee, H. T. and Lucas, J. J., 1977, J. Phys. D, 10:343.Google Scholar
  32. Sakai, Y., Tagashira, H., and Sakamoto, S., 1977, J. Phys. D, 10:1035.Google Scholar
  33. Schryer, N. L., 1976, Bell Laboratories Computing Science Technical Report No. 52 (unpublished).Google Scholar
  34. Skullerud, H. R., 1969, J. Phys. B, 2:696.Google Scholar
  35. Tachibana, K. and Phelps, A. V., 1979, J. Chem. Phys., 71:3544.Google Scholar
  36. Tagashira, H., Sakai, Y., and Sakamoto, S., 1977, J. Phys. D, 10:1051. Urosevic, V. V., Petrovic, Z. Lj., Bozin, J. V., and Zeković, Lj. D., 1980, in: “Proceedings, Symposium on the Physics of Ionized Gases,” B. Cobic, ed., Boris Kidric Institute, Beograd, p. 88.Google Scholar
  37. Wilhelm, J. and Winkler, R., 1969, Ann. Phys. (Leipzig), 23:28.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • L. C. Pitchford
    • 1
  1. 1.Laser Theory DivisionSandia National LabsAlbuquerqueUSA

Personalised recommendations