Advertisement

Subcellular Metabolic Activation Systems: Their Utility and Limitations in Predicting Organ and Species Specific Carcinogenesis of Chemicals

  • Helmut Bartsch
  • Christian Malaveille
  • Anne-Marie Camus
Part of the Basic Life Sciences book series

Abstract

Extensive studies evaluating short-term tests for the detection of genotoxic agents as reliable predictors of the potential carcinogenic hazard of chemicals (1–5) have revealed that, apart from the indicator organism or the end points scored, the metabolic activation system used is of critical importance. Because of the widespread use of subcellular metabolic activation systems for the detection of DNA-damaging agents in short-term tests, a data base has become available that helps determine to what extent species and organ specific carcinogenesis of chemicals can be attributed to metabolic activation (or detoxification) reactions.

Keywords

Vinyl Chloride Chemical Carcinogen Liver Fraction Rodent Liver Metabolic Activation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCann, J., E. Choi, E. Yamasaki, and B.N. Ames. 1975. Detection of carcinogens as mutagens in the Salmonella/ microsome test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72: 5135–5139.PubMedCrossRefGoogle Scholar
  2. 2.
    Sugimura, T., S. Sato, M. Nagao, T. Yahagi, T. Matsushima, Y. Seino, M. Takeuchi, and T. Kawachi. 1976. Overlapping of carcinogens and mutagens. In: Fundamentals in Cancer Prevention. P.N. Magee, ed. University of Tokyo Press/ University Park Press: Tokyo/Baltimore. pp. 191–215.Google Scholar
  3. 3.
    Purchase, I.F.H., E. Longstaff, J. Ashby, J.A. Styles, D. Anderson, P.A. Lefevre, and F.R. Westwood. 1978. An evaluation of 6 short-term tests for detecting organic chemical carcinogens. Brit. J. Cancer 37: 873–959.PubMedCrossRefGoogle Scholar
  4. 4.
    Holistein, M., J. McCann, F.A. Angelosanto, and W.W. Nichols. 1979. Short-term tests for carcinogens and mutagens. Mutat. Res. 65: 132–226.Google Scholar
  5. 5.
    Bartsch, H., C. Malaveille, A.M. Camus, G. Martel-Planche, G. Brun, A. Hautefeuille, N. Sabadie, A. Barbin, T. Kuroki, C. Drevon, G. Piccoli, and R. Montesano. 1980. Validation and comparative studies on 180 chemicals with S. typhimuriumstrains and V79 Chinese hamster cells in the presence of various metabolizing systems. Mutat. Res. 76: 1–50.PubMedGoogle Scholar
  6. 6.
    Miller, E.C. 1978. Some current perspectives on chemical carcinogenesis in humans and experimental animals. Cancer Res. 38: 1479–1496.PubMedGoogle Scholar
  7. 7.
    Bartsch, H., T. Kuroki, M. Roberfroid, and C. Malaveille. (in press). Metabolic activation systems in vitro for carcinogen/mutagen screening tests. In: Chemical Mutagens - Principles and Methods for Their Detection, Volume 7. Plenum Press: New York & London.Google Scholar
  8. 8.
    Nagao, M., T. Yahagi, Y. Seino, T. Sugimura, and N. Ito. 1977. Mutagenicities of quinoline and its derivatives. Mutat. Res. 42: 335–342.PubMedCrossRefGoogle Scholar
  9. 9.
    Legator, M.S., and H.V. Mailing. 1971. The host-mediated assay, a practical procedure for evaluating potential mutagenic agents in mammals. In: Chemical Mutagens, Volume 2. A. Hollaender, ed. Plenum Press: New York & London. pp. 569–588.CrossRefGoogle Scholar
  10. 10.
    Conney, A.H., and W. Levin. 1974. Carcinogen metabolism in experimental animals and man. In: Chemical Carcinogenesis Essays, IARC Scientific Publications No. 10. R. Montesano, and L. Tomatis, eds. International Agency for Research on Cancer: Lyons, France. pp. 3–24.Google Scholar
  11. 11.
    Bartsch, H., C. Malaveille, R. Montesano, and L. Tomatis. 1975. Tissue-mediated mutagenicity of vinylidene chloride and 2-chlorobutadiene in Salmonella typhimurium. Nature 255: 641–643.PubMedCrossRefGoogle Scholar
  12. 12.
    Hsieh, D.P.H., J.J. Wong, Z.A. Wong, C. Michas, and B.H. Ruebner. 1977. Hepatic transformation of aflatoxin and its carcinogenicity. In: Origins of Human Cancer. H.H. Hiatt, J.D. Watson & J.A. Winsten, eds. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY. pp. 697–707.Google Scholar
  13. 13.
    Wirth, P.J., E. Dybing, C. von Bahr, and S.S. Thorgeirsson. 1980. Mechanism of N-hydroxyacetylarylamine mutagenicity in the Salmonella test system: Metabolic activation of N-hydroxyphenacetin by liver and kidney fractions from rat, mouse, hamster, and man. Molec. Pharmacol. 18: 117–127.Google Scholar
  14. 14.
    Matsushima, T., T. Yahagi, Y. Takamoato, M. Nagao, and T. Sugimura. 1980. Species differences in microsomal activation of mutagens and carcinogens, with special reference to new potent mutagens from pyrolysates of amino acids and proteins. In: Microsomes, Drug Oxidations and Chemical Carcinogenesis. M.J. Coon, A.H. Conney, R.W. Estabrook, H.V. Gelboin, J.R. Gillette, and J. O’Brien, eds. Academic Press: New York. pp. 1093–1102.Google Scholar
  15. 15.
    Shudo, K., T. Ohta, Y. Orihara, T. Okamoto, M. Nagaa, Y. Takahashi, and T. Sugimura. 1978. Mutgenicities of phenacetin and its metabolites. Mutat. Res. 58: 367–370.Google Scholar
  16. 16.
    Weeks, C.E., W.T. Allaben, N.M. Tresp, S.C. Louie, E.J. Lazear, and C.M. King. 1980. Effects of structure of N-acyl-N-2-fluorenylhydroxylamines on arylhydroxamic acid acyltransferase, sulfotransferase, and deacylase activities and on mutations in Salmonella typhimurium TA1538. Cancer Res. 40: 1204–1211.PubMedGoogle Scholar
  17. 17.
    Ames, B.N., J. McCann, and E. Yamasaki. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian-microsome mutagenicity test. Mutat. Res. 31: 347–364.Google Scholar
  18. 18.
    McGregor, D. 1975. The relationship of 2-acetamidofluorene mutagenicity in plate tests with its in vivo liver cell component distribution and its carcinogenic potential. Mutat. Res. 30: 305–316.Google Scholar
  19. 19.
    Selkirk, J.K. 1977. Divergence of metabolic activation systems for short-term mutagenesis assays. Nature 270: 604–607.PubMedCrossRefGoogle Scholar
  20. 20.
    Bigger, C.A.H., J.E. Thomaszewski, and A. Dipple. 1978. Differences between products of binding of 7,12-dimethylbenz[a]anthracene to DNA in mouse skin and in rat liver microsomal system. Biochem. Biophys. Res. Comm. 80: 229–235.Google Scholar
  21. 21.
    Bartsch, H., C. Malaveille, B. Tierney, P.L. Grover, and P. Sims. 1979. The association of bacterial mutagenicity of hydrocarbon-derived ‘bay-region’ dihydrodiols with the Iball indices for carcinogenicity and with the extents of DNA-binding on mouse skin of the parent hydrocarbons. Chem.-Biol. Interact. 26: 185–196.Google Scholar
  22. 22.
    IARC. 1978. Some N-nitroso compounds. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Volume 17. International Agency for Research on Cancer: Lyons, France.Google Scholar
  23. 23.
    IARC. 1979. Some monomers, plastics and synthetic elastomers and acrolein. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Volume 19. International Agency for Research on Cancer: Lyons, France.Google Scholar
  24. 24.
    Buening, M.K., J.G. Fortner, A. Kappas, and A.H. Conney. 1978. 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B1 to mutagens by human liver. Biochem. Biophys. Res. Comm. 82: 348–355.Google Scholar
  25. 25.
    Tang, T., and M.A. Friedman. 1977. Carcinogen activation by human liver enzymes in the Ames mutagenicity test. Mutat. Res. 46: 387–394.Google Scholar
  26. 26.
    Sabadie, N., C. Malaveille, A.M. Camus, and H. Bartsch. 1980. Comparison of the hydroxylation of benzo[a]pyrene with the metabolism of vinyl chloride N-nitrosomorpholine and N-nitroso-N’-methylpiperazine to mutagens by human and rat liver microsomal fractions. Cancer Res. 40: 119–126.PubMedGoogle Scholar
  27. 27.
    Camus, A., B. Bertram, F.W. Kruger, C. Malaveille, and H. Bartsch. 1976. Mutagenicity of (3-oxidized N,N-di-n-propylnitrosamine derivatives in S. typhimurium mediated by rat and hamster tissues. Z. Krebsforsch. 86: 293–302.CrossRefGoogle Scholar
  28. 28.
    Bartsch, H., C. Malaveille, and R. Montesano. 1975. Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains. Int. J. Cancer 15: 429–437.Google Scholar
  29. 29.
    Camus, A.M., W.G. Pyerin, P.L. Grover, P. Sims, C. Malaveille, and H. Bartsch. 1980. Mutagenicity of benzo[a]pyrene 7,8-dihydrodiol, and 7,12-dimethylbenz[a]anthracene 3,4-dihydrodiol in S. typhimurium mediated by microsomes from rat liver and mouse skin. Chem.-Biol. Interact. 32: 257–265.Google Scholar
  30. 30.
    Langenbach, R., H.J. Freed, and E. Huberman. 1978. Liver cell-mediated mutagenesis of mammalian cells by liver carcinogens. Proc. Nat. Acad. Sci. USA 75: 2864–2867.Google Scholar
  31. 31.
    Langenbach, R., H.J. Freed, D. Raveh, and E. Huberman. 1978. Cell specificity in metabolic activation of aflatoxin B1 and benzo[a]pyrene to mutagens for mammalian cells. Nature 276: 277–280.PubMedCrossRefGoogle Scholar
  32. 32.
    Bartsch, H., G.P. Margison, C. Malaveille, A.M. Camus, G. Brun, J.M. Margison, G.F. Kolar, and M. Wiessler. 1977. Some aspects of metabolic activation of chemical carcinogens in relation to their organ specificity. Arch. Toxicol. 39: 51–63.Google Scholar
  33. 33.
    Druckrey, H.S., S. Ivankovic, and R. Preussman. 1967. Neurotrope carcinogene Wirkung von Phenyl-dimethyltriazen an Ratten. Naturwissenschaften 54: 171.PubMedCrossRefGoogle Scholar
  34. 34.
    Preussmann, R., H. Druckrey, S. Ivankovic, and A. von Hodenberg. 1969. Chemical structure and carcinogenicity of aliphatic hydrazo, azo, and azoxy compounds, and of triazenes, potential in vivo alkylating agents. Ann. N.Y. Acad. Sci. 81: 285–310.Google Scholar
  35. 35.
    Preussman, R., S. Ivankovic, C. Landschutz, J. Gimmy, E. Flohr, and U. Griesbach. 1974. Carcinogene Wirkung von 13 Aryldialkyltriazenen an BD-Ratten. Z. Krebsforsch. 81: 285–310.CrossRefGoogle Scholar
  36. 36.
    Preussmann, R., A. von Hodenberg, and H. Hengy. 1969. Mechanisms of carcinogenesis with 1-aryl-3,3-dialkyltriazenes. Enzymatic dealkylation by rat liver microsomal fractions in vitro. Biochem. Pharmacol. 18: 1–13.Google Scholar
  37. 37.
    Malaveille, C., G.F. Kolar, and H. Bartsch. 1976. Rat and mouse tissue-mediated mutagenicity of ring-substituted 3,3-dimethyl-l-phenyltriazenes in Salmonella typhimurium. Mutat. Res. 36: 1–10.Google Scholar
  38. 38.
    Giraldi, T., C. Nisi, and G. Sava. 1975. Investigation on the oxidative N-demethylation of aryl triazenes in vitro. Biochem. Pharmacol. 24: 1793–1797.Google Scholar
  39. 39.
    Preussman, R., and A. von Hodenberg. 1970. Mechanism of carcinogenesis with 1-aryl-3,3-dialkyltriazenes. Biochem. Pharmacol. 19: 1505–1507.Google Scholar
  40. 40.
    Ong, T.M., and F.J. deSerres. 1973. Genetic characterization of ad-3 mutants induced by chemical carcinogens 1-phenyl3,3-dimethyltriazene and 1-phenyl-3-monomethyltriazene in Neurospora crassa. Mutat. Res. 20: 17–23.Google Scholar
  41. 41.
    Margison, G.P., A.J. Likhachev, and G.F. Kolar. 1979. In vivo alkylation of fetal, maternal and normal rat tissue nucleic acids by 3-methyl-l-phenyltriazene. Chem.-Biol. Interact. 25: 345–357.PubMedCrossRefGoogle Scholar
  42. 42.
    Kleihues, P., G.F. Kolar, and G.P. Margison. 1976. Interaction of the carcinogen 3,3-dimethyl-l-phenyltriazene with nucleic acids of various rat tissues and the effect of a protein-free diet. Cancer Res. 36: 2189–2193.PubMedGoogle Scholar
  43. 43.
    Goth, R., and M.F. Rajewsky. 1974. Molecular and cellular mechanisms associated with pulse-carcinogenesis in the rat nervous system by ethylnitrosourea: Ethylation of nucleic acids and elimination rates of ethylated bases from the DNA of different tissues. Z. Krebsforsch. 82: 37–64.CrossRefGoogle Scholar
  44. 44.
    Kleihues, P., and G.P. Margison. 1974. Carcinogenicity of N-methyl-N-nitrosourea: Possible role of excision repair of 06-methylguanine from DNA. J. Nat. Cancer Inst. 53: 1839–1841.PubMedGoogle Scholar
  45. 45.
    Jenssen, D., B. Beije, and C. Ramel. 1979. Mutagenicity testing on Chinese hamster V79 cells treated in the in vivo liver perfusion system. Comparative investigation of different in vitro metabolizing systems with dimethylnitrosamine and benzo[a]pyrene. Chem.-Biol. Interact. 27: 27–39.PubMedCrossRefGoogle Scholar
  46. 46.
    Khudoley, V., C. Malaveille, and H. Bartsch. 1981. Mutagenicity studies in S. typhimurium on some carcinogenic N-nitramines in vitro and in the host-mediated assay in rats. Cancer Res. 41: 3205–3210.PubMedGoogle Scholar
  47. 47.
    Lee, I.P., and R.L. Dixon. 1978. Mutagenicity, carcinogenicity, and teratogenicity of procarbazine. Mutat. Res. 55: 1–14.PubMedGoogle Scholar
  48. 48.
    Moriya, M., K. Kato, T. Ohta, K. Watanabe, Y. Watanabe, and Y. Shirasu. 1978. Detection of mutagenicity of the powerful colon carcinogen 1,2-dimethylhydrazine (DMH) by host-mediated assay and its inhibition by disulfiram. Mutat. Res. 54: 244–245.Google Scholar
  49. 49.
    Blijleven, W.G.H., and E. Vogen. 1977. The mutational spectrum of procarbazine in Drosophila melanogaster. Mutat. Res. 45: 47–59.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Helmut Bartsch
    • 1
  • Christian Malaveille
    • 1
  • Anne-Marie Camus
    • 1
  1. 1.Division of Environmental CarcinogenesisInternational Agency for Research on CancerLyonsFrance

Personalised recommendations