Advertisement

Tissue and Species Specificity for Phorbol Ester Receptors

  • Peter M. Blumberg
  • K. Barry Delclos
  • Susan Jaken
Part of the Basic Life Sciences book series

Abstract

Tumor promoters are agents that, although not themselves carcinogenic, induce tumors in animals previously treated with a subthreshold dose of a carcinogen (1–3). Although tumor promotion has been characterized in greatest detail for mouse skin, it has also been demonstrated for the liver, bladder, colon, trachea, and mammary gland (4,5). The potential importance of tumor promotion in human cancer etiology is suggested by a growing body of epidemiological evidence (6–8).

Keywords

Phorbol Ester Mouse Skin Chicken Embryo Fibroblast Particulate Preparation Epidermal Growth Factor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boutwell, R.K. 1964. Some biological aspects of skin carcinogenesis. Prog. Exp. Tumor Res. 4: 207–250.PubMedGoogle Scholar
  2. 2.
    Scribner, J.D., and R. Suss. 1978. Tumor initiation and promotion. Int. Rev. Exp. Pathol. 18: 137–198.PubMedGoogle Scholar
  3. 3.
    Van Duuren, B.L. 1969. Tumor—promoting agents in two-stage carcinogenesis. Prog. Exp. Tumor Res. 11: 31–68.PubMedGoogle Scholar
  4. 4.
    Farber, E., and R. Cameron. 1980. The sequential analysis of cancer development. Adv. Cancer Res. 31: 125–226.PubMedCrossRefGoogle Scholar
  5. 5.
    Sivak, A. 1979. Cocarcinogenesis. Biochim. Biophys. Acta 560: 67–89.PubMedGoogle Scholar
  6. 6.
    Cairns, J. 1981. The origin of human cancers. Nature 289: 353–357.PubMedCrossRefGoogle Scholar
  7. 7.
    Day, N.E., and C.C. Brown. 1980. Multistage models and primary prevention of cancer. J. Natl. Cancer Inst. 64: 977–989.PubMedGoogle Scholar
  8. 8.
    Higginson, J., and C.S. Muir. 1979. Environmental carcinogenesis: Misconceptions and limitations to cancer controls. J. Natl. Cancer Inst. 63: 1291–1298.PubMedGoogle Scholar
  9. 9.
    Evans, F.J., and C.J. Soper. 1978. The tigliane, daphnane, and ingenane diterpenes, their chemistry, distribution, and biological activities: A review. Lloydia 41: 193–233.Google Scholar
  10. 10.
    Hecker, E. 1971. Isolation and characterization of the cocarcinogenic principles from croton oil. In: Methods in Cancer Research, Volume 6. H. Busch, ed. Academic Press: New York. pp. 439–484.Google Scholar
  11. 11.
    Goerttler, K., H. Loehrke, J. Schweizer, and B. Hesse. 1979. Systemic two–stage carcinogenesis in the epithelium of the forestomach of mice using 7,12–dimethylbenz[a]anthracene as initiator and the phorbol ester 12–O–tetradecanoylphorbol13–acetate as promoter. Cancer Res. 39: 1293–1297.PubMedGoogle Scholar
  12. 12.
    Goerttler, K., H. Loehrke, and B. Hesse. 1980. Two–stage carcinogenesis in NMRI mice: Intravaginal application of 7,12–dimethylbenz[a]anthracene as initiator followed by the phorbol ester 12–0-tetradecanoylphorbol-13-acetate as promoter. Carcinogenesis 1: 707–713.PubMedCrossRefGoogle Scholar
  13. 13.
    Goerttler, K., H. Loehrke, J. Schweizer, and B. Hesse. 1980. Two—stage tumorigenesis of dermal melanocytes in the back skin of the Syrian golden hamster using systemic initiation with 7,12–dimethylbenz[a]anthracene and topical promotion with 12–0-tetradecanoylphorbol–13–acetate. Cancer Res. 40: 155–161.PubMedGoogle Scholar
  14. 14.
    Blumberg, P.M. 1980. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 1. Crit. Rev. Toxicol. 8: 153–197.CrossRefGoogle Scholar
  15. 15.
    Blumberg, P.M. 1981. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 2. Crit. Rev. Toxicol. 8: 199–234.CrossRefGoogle Scholar
  16. 16.
    Boutwell, R.K. 1974. The function and mechanism of promoters of carcinogenesis. Crit. Rev. Toxicol. 2: 419–443.CrossRefGoogle Scholar
  17. 17.
    Diamond, L., T.G. O’Brien, and W.M. Baird. 1980. Tumor promoters and the mechanism of tumor promotion. Adv. Cancer Res. 32: 1–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Driedger, P.E., and P.M. Blumberg. 1977. The effect of phorbol diesters on chicken embryo fibroblasts. Cancer Res. 37: 3257–3265.PubMedGoogle Scholar
  19. 19.
    Weinstein, I.B., M. Wigler, and C. Pietropaolo. 1977. The action of tumor–promoting agents in cell culture. In: Origins of Human Cancer. H.H. Hiatt, J.D. Watson, and J.A. Winsten, eds. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY. pp. 751–772.Google Scholar
  20. 20.
    Abrahm, J., and G. Rovera. 1980. The effect of tumor–promoting phorbol diesters on terminal differentiation of cells in culture. Molec. Cell. Biochem. 31: 165–175.PubMedCrossRefGoogle Scholar
  21. 21.
    Dicker, P., and E. Rozengurt. 1979. Synergistic stimulation of early events and DNA synthesis by phorbol esters, polypeptide growth factors, and retinoids in cultured fibroblasts. J. Supramol. Struct. 11: 79–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Frantz, C.N., C.D. Stiles, and C.D. Scher. 1979. The tumor promoter 12–0–tetradecanoylphorbol–13–acetate enhances the proliferative response of BALB/c–3T3 cells to hormonal growth factors. J. Cell Phyiol. 100: 413–424.CrossRefGoogle Scholar
  23. 23.
    Weinstein, I.B., H. Yamasaki, M. Wigler, L.-S. Lee, P.B. Fisher, A. Jeffrey, and D. Grunberger. 1979. Molecular and cellular events associated with the action of initiating carcinogens and tumor promoters. In:Google Scholar
  24. Carcinogens: Identification and Mechanisms of Action. A.C. Griffin and C.R. Shaw,. Raven Press: New York. pp. 399–418.Google Scholar
  25. 24.
    Blumberg, P.M., K.B. Delclos, W.G. Dunphy, and S. Jaken. (in press). Specific binding of phorbol ester tumor promoters to mouse tissues and cultured cells. In: Cocarcinogenesis and Biological Effects of Tumor Promoters. E. Hecker, ed. Raven Press: New York.Google Scholar
  26. 25.
    Delclos, K.B., D.S. Nagle, and P.M. Blumberg. 1980. Specific binding of phorbol ester tumor promoters to mouse skin. Cell 19: 1025–1032.PubMedCrossRefGoogle Scholar
  27. 26.
    Driedger, P.E., and P.M. Blumberg. 1980. Specific binding of phorbol ester tumor promoters. Proc. Natl. Acad. Sci. USA 77: 567–571.PubMedCrossRefGoogle Scholar
  28. 27.
    Dunphy, W.G., K.B. Delclos, and P.M. Blumberg. 1980. Characterization of specific binding of [3H]phorbol 12,13–dibutyrate and [3H]phorbol 12–myristate 13–acetate to mouse brain. Cancer Res. 40: 3635–3641.PubMedGoogle Scholar
  29. 28.
    Dunphy, W.G., R.J. Kochenburger, M. Castagna, and P.M. Blumberg. 1981. Kinetics and subcellular localization of specific [3H]phorbol 12,13-dibutyrate binding by mouse brain. Cancer Res. 41: 2640–2647.PubMedGoogle Scholar
  30. 29.
    Jaken, S., A.H. Tashjian, Jr., and P.M. Blumberg. 1981. Characterization of phorbol ester receptors and their down–modulation in GH4C1 rat pituitary cells. Cancer Res. 41: 2175–2181.PubMedGoogle Scholar
  31. 30.
    Lew, K.K., S. Chritton, and P.M. Blumberg. (in press). Biological responsiveness to the phorbol esters and specific binding of [3H]phorbol 12,13–dibutyrate in the nematode Caenorhabditis elegans, a manipulable genetic system. Teratog. Carcinog. Mutag.Google Scholar
  32. 31.
    Nagle, D.S., S. Jaken, M. Castagna, and P.M. Blumberg. 1981. Variation with embryonic development and regional localization of specific [3H]phorbol 12,13–dibutyrate binding to brain. Cancer Res. 41: 89–93.PubMedGoogle Scholar
  33. 32.
    Lee, L.–S., and I.B. Weinstein. 1978. Uptake of the tumor–promoting agent12–0–tetradecanoylphorbol–l3–acetate by HeLa cells. J. Env. Pathol. Toxicol. 1: 627–639.Google Scholar
  34. 33.
    Jacobson, K., C.E. Wenner, G. Kemp, and D. Papahadjopoulos. 1975. Surface properties of phorbol esters and their interaction with lipid monolayers and bilayers. Cancer Res. 35: 2991–2995.PubMedGoogle Scholar
  35. 34.
    Scribner, J.D., and R.K. Boutwell. 1972. Inflammation and tumor promotion: Selective protein induction in mouse skin by tumor promoters. Eur. J. Cancer 8: 617–621.PubMedCrossRefGoogle Scholar
  36. 35.
    Thielmann, H.–W., and E. Hecker. 1969. Beziehungen zwischen der Struktur von PhorUnderlineerivaten und ihren entzündlichen und tumorpromovierenden Eigenschaften. In: Fortschr. d. Krebsforsch., VII. C.G. Schmidt and 0. Wetter,. Schattauer: New York. pp. 171–179.Google Scholar
  37. 36.
    Kubinyi, H. 1976. Quantitative structure–activity relationships IV. Nonlinear dependence of biological activity on hydrophobic character: A new model. Arzneim.Forsch. 26: 1991–1997.Google Scholar
  38. 37.
    Kreibich, G., and E. Hecker. 1970. On the active principles of croton oil. X: Preparation of tritium–labeled croton oil factor Al, and other tritium–labeled phorbol derivatives. Z. Krebsforsch. 74: 448–456.PubMedCrossRefGoogle Scholar
  39. 38.
    Blumberg, P.M., P.E. Driedger, and P.W. Rossow. 1976. Effect of a phorbol ester on a transformation–sensitive surface protein of chick fibroblasts. Nature 264: 446–447.PubMedCrossRefGoogle Scholar
  40. 39.
    Driedger, P.E., and P.M. Blumberg. 1979. Quantitative correlation between in vitro and in vivo activities of phorbol esters. Cancer Res. 39: 714–719.PubMedGoogle Scholar
  41. 40.
    Driedger, P.E., and P.M. Blumberg. 1980. Structure–activity relationships in chick embryo fibroblasts for phorbolrelated diterpene esters showing anomalous activities in vivo. Cancer Res. 40: 339–346.PubMedGoogle Scholar
  42. 41.
    Akera, T., T.M. Brody, and S.A. Wiest. 1979. Saturable adenosine 5–triphosphate–independent binding of [3H]ouabain to brain and cardiac tissue in vitro. Brit. J. Pharmacol. 65: 403–409.Google Scholar
  43. 42.
    Papazian, D., H. Rahamimoff, and S.M. Goldin. 1979. Reconstitution and purification by “transport specificity fractionation” of an ATP–dependent calcium transport component from synaptosome–derived vesicles. Proc. Natl. Acad. Sci. USA 76: 3708–3712.PubMedCrossRefGoogle Scholar
  44. 43.
    Watterson, D.M., W.G. Harrelson, Jr., P.M. Keller, F. Sharief, and T.C. Vanaman. 1976. Structural similarities between the calcium-dependent regulatory proteins of 3’:5’-cyclic nucleotide phosphodiesterase and actomyosin ATPase. J. Biol. Chem. 251: 4501–4513.PubMedGoogle Scholar
  45. 44.
    Catterall, W.A., C.S. Morrow, and R.P. Hartshorne. 1979. Neurotoxin binding to receptor sites associated with voltage–sensitive sodium channels in intact, lysed, and detergent–solubilized brain membranes. J. Biol. Chem. 254: 11379–11387.PubMedGoogle Scholar
  46. 45.
    Nebert, D.W., W.F. Benedict, J.E. Gielen, F. Oesch, and J.W. Daly. 1972. Aryl hydrocarbon hydroxylase, epoxide hydrase, and 7,12–dimethylbenz[a]anthracene–produced skin tumorigenesis in the mouse. Molec. Pharmacol. 8: 374–379.Google Scholar
  47. 46.
    Schmid, F.A., M.S. Demetriades, F.M. Schabel, III, and G.S. Tarnowski. 1967. Toxicity of several carcinogenic polycyclic hydrocarbons and other agents in AKR and C57BL/6 mice. Cancer Res. 27: 563–567.Google Scholar
  48. 47.
    Nebert, D.W., and N.M. Jensen. 1979. The Ah locus: Genetic regulation of the metabolism of carcinogens, drugs, and other environmental chemicals by cytochrome P–450–mediated monooxygenases. Crit. Rev. Biochem. 6: 401–437.CrossRefGoogle Scholar
  49. 48.
    Estensen, R.D., D.K. DeHoogh, and C.F. Cole. 1980. Binding of [3H]12–0–tetradecanoylphorbol–13–acetate to intact human peripheral blood lymphocytes. Cancer Res. 40: 1119–1124.PubMedGoogle Scholar
  50. 49.
    Shoyab, M., and G.J. Todaro. 1980. Specific high–affinity cell membrane receptors for biologically active phorbol and ingenol esters. Nature 288: 451–455.PubMedCrossRefGoogle Scholar
  51. 50.
    Dunphy, W.G., C.–C. Lau, and P.M. Blumberg. 1980. Phorbolrelated diterpene esters have similar structure–activity relationships in Swiss 3T3 cells and chicken embryo fibroblasts. Carcinogenesis 1: 347–351.PubMedCrossRefGoogle Scholar
  52. 51.
    Bresch, H., and U. Arendt. 1978. Disturbances of early sea urchin development by the tumor promoter TPA (phorbol ester). Naturwissenschaften 65: 660–662.PubMedCrossRefGoogle Scholar
  53. 52.
    Pabst, G., ed. 1883. Euphorbia Resinifera. In: MedizinalPflanzen, Volume 1. Fr. Eugen. Kohler Verlag. pp. 159.Google Scholar
  54. 53.
    Weber, J., and E. Hecker. 1978. Cocarcinogens of the diterpene ester type from Croton flavens L. and esophageal cancer in Curacao. Experientia 34: 679–682.PubMedCrossRefGoogle Scholar
  55. 54.
    Morton, J.F. 1971. Welensali ( Croton flavens ): Folk uses and properties. Econ. Bot. 25: 457–463.CrossRefGoogle Scholar
  56. 55.
    Watt, J.M., and M.G. Breyer–Brandwijk. 1962. The Medicinal and Poisonous Plants of Southern and Eastern Africa. E. S. Livingstone, Ltd.: Edinburgh and London. p. 415.Google Scholar
  57. 56.
    Calkins, J. 1972. Tobacco smoke, carcinogens, and systems for recovery from DNA injury. Proceedings of the Third Tobacco and Health Workshop, University of Kentucky. pp. 214–231.Google Scholar
  58. 57.
    Kinghorn, A.D., K.K. Harjes, and N.J. Doorenbos. 1977. Screening procedure for phorbol esters using brine shrimp (Artemia salin) larvae. J. Pharmacol. Sci. 66: 1362–1363.CrossRefGoogle Scholar
  59. 58.
    Soper, C.J., and F.J. Evans. 1977. Investigations into the mode of action of the cocarcinogen 12–0–tetradecanoylphorbol–13–acetate using auxotrophic bacteria. Cancer Res. 37: 2487–2491.PubMedGoogle Scholar
  60. 59.
    Barnes, R.D. 1980. Invertebrate Zoology. Saunders College: Philadelphia.Google Scholar
  61. 60.
    Potter, J.D., and J. Gergely. 1975. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J. Biol. Chem. 250: 4628–4633.PubMedGoogle Scholar
  62. 61.
    Piascik, M.T., P.L. Wisler, C.L. Johnson, and J.D. Potter. 1980. Ca++—dependent regulation of guinea pig brain adenylate cyclase. J. Biol. Chem. 255: 4176–4181.PubMedGoogle Scholar
  63. 62.
    Kretsinger, R.H. 1976. Calcium–binding proteins. Ann. Rev. Biochem. 45: 239–266.PubMedCrossRefGoogle Scholar
  64. 63.
    Osborne, R., and A.H. Tashjian, Jr. 1981. Tumor—promoting phorbol esters affect production of prolactin and growth hormone by rat pituitary cells. Endocrinology 108:1164–1170.PubMedCrossRefGoogle Scholar
  65. 64.
    Lee, L.–S., and I.B. Weinstein. 1978. Tumor–promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors. Science 202: 313–315.PubMedCrossRefGoogle Scholar
  66. 65.
    Shoyab, M., J.E. DeLarco, and G.J. Todaro. 1979. Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors. Nature 279: 387–391.PubMedCrossRefGoogle Scholar
  67. 66.
    Hirsh, D. 1975. Patterns of gene expression. In: Microbiology–1975. D. Schlessinger, ed. American Society for Microbiology: Washington, DC. pp. 508–514.Google Scholar
  68. 67.
    Hirsh, D., D. Oppenheim, and M. Klass. 1976. Development of the reproductive system of Caenorhabditis elegans. Dev. Biol. 49: 200–219.PubMedCrossRefGoogle Scholar
  69. 68.
    Hirsh, D., and R. Vanderslice. 1976. Temperature—sensitive developmental mutants of Caenorhabditis elegans. Develop. Biol. 49: 220–235.PubMedCrossRefGoogle Scholar
  70. 69.
    Lew, K., and A. Kolber. (in press). An in vitro assay to screen for mutagens/carcinogens in the nematode C. elegans. In: In Vitro Toxicity Testing of Environmental Chemicals: Current and Future Possibilities. A. Kolber and T. Wong,. Plenum Press: New York.Google Scholar
  71. 70.
    Brenner, S. 1973. The genetics of behaviour. Brit. Med. Bull. 29: 269–271.PubMedGoogle Scholar
  72. 71.
    Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71–94.PubMedGoogle Scholar
  73. 72.
    Sulston, J., and R. Horvitz. 1977. Post—embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56: 110–156.PubMedCrossRefGoogle Scholar
  74. 73.
    Sulston, J., and S. Brenner. 1974. The DNA of Caenorhabditis elegans. Genetics 77: 95–104.PubMedGoogle Scholar
  75. 74.
    Emmons, S., M. Klass, and D. Hirsh. 1979. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79: 1333–1337.CrossRefGoogle Scholar
  76. 75.
    Driedger, P.E., and P.M. Blumberg. 1980. Different biological targets for resiniferatoxin and phorbol 12–myristate 13–acetate. Cancer Res. 40: 1400–1404.PubMedGoogle Scholar
  77. 76.
    Horowitz, A.D., E. Greenebaum, and I.B. Weinstein. 1980. Identification and properties of phorbol ester receptors in rat embryo cells. J. Cell Biol. 87: 174a.Google Scholar
  78. 77.
    Scheinberg, D.A., and M. Strand. 1981. A brain membrane protein similar to the rat src gene product. Proc. Natl. Acad. Sci. USA 78: 55–59.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Peter M. Blumberg
    • 1
  • K. Barry Delclos
    • 1
  • Susan Jaken
    • 1
  1. 1.Department of PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations