Advertisement

Structural Analysis of Eukaryotic DNA Polymerase-α

  • Marcel Mechali
  • Anne-Marie de Recondo

Abstract

Three major species of DNA polymerases have been described in eukaryotic cells. The first one to be identified in 1958 by Bollum was DNA polymerase-α1. DNA polymerase-β was described in 1971 by Weissbach et al.2, Baril et al.3, and Chang and Bollunn4. DNA polymerase-γ was the last DNA polymerase identified in 1973 by Fridlender et al.5. Byrnes et al. claimed, in 1976, the existence of a fourth class of DNA polymerase, named DNA polymerase-δ6. Unfortunately, it is not clear at present whether DNA polymerase-δ is a distinct DNA polymerase species, or rather the association of DNA polymerase-α with a 3′–5′ exonuclease activity6,7. Over the last few years, the description of the properties of these enzymes and their functional roles in eukaryotic DNA replication have been well documented8-11. Circumstantial evidence for involvement of DNA polymerase-α in the DNA replication process has been found in a great variety of experimental systems. They include cells stimulated to divide12–14, regenerating rat liver15,16, cells infected by DNA viruses17–20, perinatal development of neurons21, and cardiac muscle differentiation21,22

Keywords

Catalytic Core Drosophila Embryo Core Enzyme Core Subunit Catalytic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Bollum, J. Ann. Chem. Soc. 80:1766 (1958).CrossRefGoogle Scholar
  2. 2.
    A. Weissbach, A. Schlabach, B. Fridlender and A. Bolden, Nature 231:167–170(1971).Google Scholar
  3. 3.
    E. F. Baril, O. E. Brown, M. D. Jenkins and J. Laszlo, Biochemistry 10:1981–1992 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    L. M. S. Chang and F. J. Bollum, J. Biol. Chem. 246:5835–5837 (1971).PubMedGoogle Scholar
  5. 5.
    B. Fridlender, M. Fry, A. Bolden and A. Weissbach, Proc. Natl. Acad. Sci. U.S.A. 69:452–455 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    J. J. Byrnes, K. M. Downey, U. L. Black and A. S. So, Biochemistry 15:2817–2823 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. C. Chen, E. W. Bohn, S. R. Planck and S. H. Wilson, J. Biol. Chem. 254:11678–11687 (1979).PubMedGoogle Scholar
  8. 8.
    F. J. Bollum, Progr. Nucl. Ac. Res. 15:109–144 (1975).CrossRefGoogle Scholar
  9. 9.
    A. Weissbach, Ann. Rev. Biochem. 46:25–47 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Falaschi and S. Spadari, in:“DNA synthesis, Present and Future,” I. Molineux and M. Kohyama, eds., NATO Advanced Study Institute Series A, No, 17, pp. 487–515, Plenum Press, New York (1978).Google Scholar
  11. 11.
    M. L. de Pamphilis and P. M. Wassarman, Ann. Rev. Biochem. 49: 627–666 (1980).CrossRefGoogle Scholar
  12. 12.
    L. M. S. Chang, M. Brown and F. J. Bollum, J. Mol. Biol. 74:1–8 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Spadari and A. Weissbach, J. Mol. Biol. 86:11–20 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    U. Bertazzoni, M. Stefanini, G. Pedrali-Noy, G. Giulotto, F. Nuzzo, A. Falaschi and S. Spadari, Proc. Natl. Acad. Sci. U.S.A. 73:785–789 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    L. M. S. Chang and F. J. Bollum, J. Biol. Chem. 247:7948–7950 (1972).PubMedGoogle Scholar
  16. 16.
    A. M. de Recondo and J. Abadiedebat, Nucl. Ac. Res. 3:1823–1837 (1976).Google Scholar
  17. 17.
    M. Mechali, M. Girard and A. M. de Recondo, J. Virology 23:117–125 (1977).PubMedGoogle Scholar
  18. 18.
    U. Wintersberger and E. Wintersberger, J. Virology 16:1095–1100 (1975).PubMedGoogle Scholar
  19. 19.
    H. J. Edenberg, S. Anderson and M. L. de Pamphilis, J. Biol. Chem. 9:3273–3280 (1978).Google Scholar
  20. 20.
    H. Krokan, P. Schaffer and M. L. de Pamphilis, Biochemistry 18: 4431–4443 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    U. C. Hubscher, C. C. Kuenzle and S. Spadari, Nucl. Ac. Res. 4: 2917–2929 (1977).CrossRefGoogle Scholar
  22. 22.
    W. C. Claycomb, 250:3229-3235 (1975).Google Scholar
  23. 23.
    A. M. Holmes, I. P. Hesslewood and I. R. Johnston, Europ. J. Biochem. 43:487–499 (1974).CrossRefGoogle Scholar
  24. 24.
    A. M. Holmes, I. P. Hesslewood and I. R. Johnston, Europ. J. Biochem. 62:229–235 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Mechali and A. M. de Recondo, Biochem. Biophys. Res. Commun. 82:255–264 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    P. A. Fisher and D. Korn, J. Biol. Chem. 252:6528–6535 (1977).PubMedGoogle Scholar
  27. 27.
    M. Mechali, J. Abadiedebat and A. M. de Recondo, J. Biol. Chem. 255:2114–2122 (1980).PubMedGoogle Scholar
  28. 28.
    G. R. Banks, J. A. Boezi and I. R. Lehman, J. Biol. Chem. 254: 9886–9892 (1979).PubMedGoogle Scholar
  29. 29.
    F. Grummt, G. Waltl, H. M. Jantzen, K. Hamprecht, U. Hubscher and C. C. Kuenzle, Proc. Natl. Acad. Sci. U.S.A. 76:6081–6085 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    F. Grosse and G. Krauss, Nucl. Ac. Res. 8:5703–5714 (1980).CrossRefGoogle Scholar
  31. 31.
    M. Duguet, M. Mechali and J. M. Rossignal, Anal. Biochem. 88:399–405 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    C. L. Brackel and A. B. Blumenthal, Biochemistry 16:3137–3143 (1977).CrossRefGoogle Scholar
  33. 33.
    G. Villani, B. Sauer and I. R. Lehman, J. Biol. Chem. 255:9479–9483 (1980).PubMedGoogle Scholar
  34. 34.
    M. Mechali and A. M. de Recondo, Eur. J. Biochem. 58:416–466 (1975).CrossRefGoogle Scholar
  35. 35.
    A. Matsukage, E. W. Bohn and S. H. Wilson, Biochemistry 14:1006–1020 (1975).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Spadari, R. Müller and A. Weissbach, J. Mol. Biol. Chem. 249: 2991–2992 (1974).Google Scholar
  37. 37.
    J. Margolis and K. G. Kenrick, Anal. Biochem. 25:347–362 (1968).PubMedCrossRefGoogle Scholar
  38. 38.
    A. M. de Recondo, J. A. Lepesant, O. Fichot, I. Grasset, J. M. Rossignol and M. Cazillis, J. Biol. Chem. 248:131–137 (1973).PubMedGoogle Scholar
  39. 39.
    O. Fichot, M. Pascal, M. Mechali and A. M. de Recondo, Biochem. Biophys. Acta 561:29–41 (1979).PubMedGoogle Scholar
  40. 40.
    M. Mechali and A. M. de Recondo, FEBS Letters 109:219–222 (1980).PubMedCrossRefGoogle Scholar
  41. 41.
    R. M. Benbow, R. Q. W. Pestell and C. C. Ford, Developmental Biology 43:159–174 (1975).CrossRefGoogle Scholar
  42. 42.
    G. Martini, F. Tato, D. Gandini Attardi and G. P. Tocchini-Valentini, Biochem. Biophys. Res. Commun. 72:875–879 (1976).PubMedCrossRefGoogle Scholar
  43. 43.
    A. M. Holmes, I. P. Hesslewood and I. R. Johnston, Nature 255:420–422 (1975).PubMedCrossRefGoogle Scholar
  44. 44.
    G. Pedrali Noy and A. Weissbach, Biochem. Biophys. Acta 477:70–83 (1977).Google Scholar
  45. 45.
    C. Me Henry and A. Kornberg, J. Biol. Chem. 252:6478–6484 (1977).Google Scholar
  46. 46.
    T. Kornberg and M. L. Gefter, J. Biol. Chem. 247:5369–5375 (1972).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Marcel Mechali
    • 1
  • Anne-Marie de Recondo
    • 1
  1. 1.Unite d’EnzymologieInstitut de Recherches Scientifiques sur le CancerVillejuif CedexFrance

Personalised recommendations